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Abstract Typically, a specific market (e.g., of hotels,
restaurants, laptops, etc) is represented as a multi-attribute
dataset of the available products. The topic of identifying
and shortlisting the products of most interest to a user has
been well-explored. In contrast, in this work we focus on the
dataset, and aim to assess its competitiveness with regard to
different possible preferences. We define measures of com-
petitiveness, and represent them in the form of a heat-map
in the domain of preferences. Our work finds application in
market analysis and in business development. These appli-
cations are further enhanced when the competitiveness heat-
map is used in tandem with information on user preferences
(which can be readily derived by existing methods). Inter-
estingly, our study also finds side-applications with strong
practical relevance in the area of multi-objective querying.
We propose a suite of algorithms to efficiently produce the
heat-map, and conduct case studies and an empirical evalu-
ation to demonstrate the practicality of our work.
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1 Introduction

In a market where the available products are evaluated based
on multiple aspects, the suitability of a product and/or its
superiority over a competing product is a subjective mat-
ter that depends on the preferences of each individual user.
Let P be the dataset of products available in the market to
satisfy a specific need (e.g., hotels in New York City), where
each product is represented by d attributes (e.g., TripAdvisor
ratings on service, cleanliness, value, etc). There has been
extensive research on multi-objective operators to identify
the products in P of highest interest to a user, such as the
top-k query [37,73], the skyline [15,55], and hybrids of the
two [19,48]. While the topic of shortlisting products for a
user has been well-explored, in this paper we focus on the
dataset itself, aiming to quantify and analyze its competi-
tiveness.

Competitiveness as a general term has been used in the
preference querying literature. However, all its past defini-
tions (i) apply to a single product p in isolation, and (ii)
are defined according to how many products p dominates or
is dominated by [43,79,91,80], or how many top-k queries
(from a known and given set) include it in their result [47,78,
58]. In contrast, we aim for a holistic representation of the
competitiveness of the entire dataset, broken down per user
type for any kind of possible preferences. To our knowledge,
no past work considers competitiveness under that prism.
Importantly, the applications of our work are also very dif-
ferent, revolving around the overall competitive landscape
as opposed to the impact of an isolated product. To make
the applications as concrete as possible, we will elaborate
on them only after our general problem definition, with ref-
erence to a case study we conducted on real data.

To model preferences, we follow the most prolifer-
ate [39,23] and effective [59] representation by numerical
weights in a linear utility model. That is, each preference
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(a) Competitiveness heat-map
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(b) Actual user preferences

Fig. 1 Heat-map for TripAdvisor hotels, and actual user preferences

profile is characterized by a d-dimensional vector w, com-
prising one weight per product attribute. We refer to the do-
main of that vector as the user spectrum, and define com-
petitiveness in the same domain. Our competitiveness mea-
sures draw directly from the principles that underlie stan-
dard multi-objective querying. In particular, they fall under
two categories, i.e., utility-based (which aim to capture how
satisfied the different user types are expected to be with the
products available in P) and competition-based (which aim
to quantify how steep the competition among alternative
products is with regard to different preferences). Specified
a competitiveness measure, we partition the user spectrum
into cells. Our computational task is to associate every cell
with a competitiveness value for the chosen measure. To-
gether, the competitiveness-marked cells form a heat-map
that represents how competitive the dataset is at different
parts of the user spectrum, i.e., for different types of users.

To exemplify, Figure 1(a) presents the (utility-based)
heat-map for a real dataset of 1,850 hotels, using as at-
tributes their actual TripAdvisor ratings on value, room, and
location [5]. The preference weights on these three aspects
define a triangular user spectrum. We represent the heat-map
in that spectrum. The lighter (deeper) the color of a cell, the
lower (higher, respectively) its competitiveness. While the
case study specifics are elaborated in a dedicated section,
the example demonstrates how the heat-map can be used for
market analysis and for the identification of opportunities
for business development.

Application 1: Market Analysis. On this front, the cells
with the highest competitiveness values indicate where the
market’s strength lies and what types of customers have at-
tracted most of its efforts. This may lend a better understand-
ing of supply dynamics or spark further investigation of the
reasons behind the high competitiveness (or lack thereof) for
certain types of users. In our example, the deepest-colored
cells concentrate around the left corner of the spectrum,
meaning that the hotel market caters best for (and, thus, has
likely been focusing its efforts and resources to serve) users
who prioritize value over room quality and location.

Application 2: Business Development. On the front of
business development, high competitiveness cells may in-
dicate a saturation of the market for the respective parts
of the user spectrum. Conversely, low competitiveness re-
gions could indicate sweet spots for the introduction of a
new product p (e.g., the setup of a new hotel). Our heat-
map in Figure 1(a) suggests that it may be easier to intro-
duce a high-ranking hotel when it is tailored to preferences
in the lighter-colored cells. Importantly, we note that after
the target cells (preference regions) in the user spectrum are
identified, there already exist methods to determine what at-
tributes p should have so that it ranks, say, among the top-k
for any [71] or for a desired fraction [89,88,69] of the users
in those regions.

When the distribution (or a representative sample) of
the user preferences is known, the heat-map enables even
stronger support in both aforementioned applications. There
is a variety of proven preference learning approaches,
specifically for the linear utility model, which enable the
mining of actual preference samples/distribution, like those
surveyed in [28]. In our TripAdvisor case study, we used
the preference learning technique in [81] to extract 137,563
weight vectors from the text and scores in actual user re-
views on the same portal. Figure 1(b) demonstrates those
vectors in the 3-dimensional user spectrum.1 Observe that
our heat-map in Figure 1(a) represents the competitiveness
distribution of P (as a discrete multivariate function) in the
same domain, i.e., in the user spectrum. The similarity be-
tween the two distributions (Figures 1(a) and 1(b)) indi-
cates how well the market’s strength is aligned with actual
user demand; to assess the degree of alignment, we may
use standard measures for distribution similarity, such as
the Bhattacharyya coefficient [14], the Jensen–Shannon di-
vergence [44], etc. In our scenario, for instance, the Bhat-
tacharyya coefficient (which takes values between 0 and 1,
the higher the more similar) is 0.36. This modest alignment
may indicate that there is business potential and space for
further market customization to user demand. At the same
time, availability of the user preference distribution may also
complement our heat-map in choosing the target cells (re-
gions in the user spectrum) that a new hotel p should aim for.
For example, the competitiveness heat-map and the prefer-
ence distribution could be combined into a joint, bi-criteria
optimization search in the user spectrum to identify its most
promising parts (cells) for business growth.

In addition to its main applications, our processing
framework has side-applications with strong practical rel-
evance, such as the identification of outstanding products in
the market, and top-k query acceleration.

Identifying Outstanding Products. Our utility-based
heat-map represents the utility “fringe” of the dataset at dif-

1 For legibility, only a 2% random sample of the weight vectors is
illustrated.
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ferent parts of the user spectrum. If a product’s utility stands
out significantly from that forefront, it is likely an excep-
tional product. In Section 6, we describe a concrete method-
ology for the identification of outstanding products, with the
adaptation of established outlier detection measures.

Top-k Acceleration. Our processing framework does not
require any form of pre-computation, other than the exis-
tence of a general purpose index on P . For the case of static
product sets, however, our heat-map itself could be used as
a materialized structure to expedite the processing of top-k
queries on P . As we explain in Section 6, the heat-map may
serve as a look-up table that reduces top-k search to plain
range search, drastically shortening the computation time.

Our contributions can be summarized as follows:
• We propose a new problem with applications in the analy-

sis of a market and the identification of opportunities in it.
• We formalize the problem based on the practical needs

and the principles that underlie multi-objective querying.
• We develop a comprehensive suite of algorithms for its

efficient processing.
• We identify promising byproducts of our study that have

their own merit.
• We demonstrate the practicality of our work via (i) case

studies with real data, and (ii) a performance evaluation
using real and synthetic benchmarks.
The rest of the paper is structured as follows. Section 2

reviews related work. Section 3 formalizes the problem and
substantiates the practical rationale behind the specific for-
malization. Section 4 presents (a baseline and) four novel al-
gorithms to produce the heat-map. Section 6 describes two
side-applications of our work. Section 7 presents our case
studies, followed by performance experiments. Finally, Sec-
tion 8 concludes the paper.

2 Related Work

We first survey the two traditional multi-objective queries in
databases, together with their most relevant variants. Then,
we review a recent and effective concept that hybridizes
these two approaches. Next, we discuss an existing type of
heat-map for a different problem, and conclude the section
with other related studies.

2.1 Traditional Multi-objective Queries

Identifying the products of possible interest from a multi-
attribute datasetP has been well-explored in databases, with
the skyline and the top-k query emerging as the standard op-
erators for this task. Regarding the former, a product pi is
said to dominate another pj when it is at least as prefer-
able on all aspects, and strictly more preferable on at least

one aspect [15]. The skyline of a dataset P includes those
products that are not dominated. The efficient computation
of the skyline has been studied extensively in the external
memory model, be it with [55] or without an index on P
[61,65]; the interested reader may refer to surveys on sky-
line processing [34,38]. When P is indexed, the state of the
art algorithm, called BBS [55], uses a search heap to visit
index nodes and products in increasing distance from the
top-corner (i.e., the corner of the product space with the
maximum coordinates). BBS maintains an interim skyline
set, which is updated as new products are popped from the
heap. Encountered nodes and products that are dominated
by an existing skyline member are pruned, i.e., disregarded.
The skyline is finalized when the heap becomes empty. The
k-skyband is a generalization of the skyline, which includes
all products in P that are dominated by fewer than k others.

The other traditional approach is the top-k query [16,35,
37]. It receives as input a user-specific vector w comprising
d weights (one per product dimension), and defines the util-
ity of a product p ∈ P as the weighted sum of its attributes,
i.e., the dot product w · p. The top-k result includes the k
products with the highest utility. Assuming an index on P ,
Tao et al. [73] propose a branch-and-bound top-k process-
ing algorithm, which uses a search heap to visit index nodes
and products in increasing utility order. Interesting variants
arise when the weight vector is not specified, but assumed to
follow a certain distribution. For example, if the distribution
is uniform, Soliman et al. [66] compute the most probable
top-k result. Given an ad hoc distribution for w, Peng and
Wong [58] derive a subset of P that is most likely to in-
clude the top-1 result. Reverse variants of top-k have also
attracted considerable interest. Most prominently, given a
set of weight vectors and specified a product p ∈ P , the
reverse top-k query identifies the weight vectors that have
p among their top-k products [76]. Its monochomatic ver-
sion [77,70], instead of specific weight vectors, identifies
regions where any vector would hold p in its top-k result.
Along the same lines, the reverse k-ranks query [94] iden-
tifies the weight vectors (from a given set) that rank p the
highest, or that associate p with the highest utility.

2.2 Restricted Dominance

There have been several approaches to hybridize the
skyline/k-skyband with the top-k query (e.g., [45,72,84]),
comprehensively surveyed in [32]. The most recent attempt
relies on restricted dominance (r-dominance), a notion that
combines gracefully elements from both paradigms. Con-
sidering only weight vectors w in a given region (convex
polytope) R, a product pi r-dominates another product pj
if pi’s utility is at least as high as pj’s for every w ∈ R,
and strictly higher for at least one w ∈ R. The products
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in P that are not r-dominated by any other product consti-
tute the r-skyline [19]. As a building block for a more com-
plex operator, it was generalized for k ≥ 1 in [50], giv-
ing rise to the rk-skyband, i.e., the set of products in P that
are r-dominated by fewer than k others. The rk-skyband is
guaranteed to include the top-k products for any w ∈ R.
The notion of r-dominance has been well-received, spark-
ing approaches for incremental rk-skyband [48], as well as
r-skyline computation in distributed settings [20] by extend-
ing the classic threshold algorithm [26].

Related (conceptually, at least) to r-dominance are the
query-dependent forms of dominance considered in spa-
tial databases. For example, in the context of spatial sky-
lines [62,64], given a set of query points, a product pi spa-
tially dominates another pj if every query point is closer to
pi than to pj . Emrich et al. [25] propose an optimal deci-
sion criterion for spatial pruning of complex objects approx-
imated by minimum bounding rectangles (MBRs). Given
three multi-dimensional rectangles A, B, and R, they deter-
mine whether for any triplet of points a ∈ A, b ∈ B, and r ∈
R, it holds that dist(a, r)< dist(b, r) for some distance met-
ric. If so, they consider that rectangle A dominates B with
respect to R. In computing the number of rectangles that
dominate an object, they address the challenge of incorpo-
rating into the count the rectangles that only partially domi-
nate the object, and develop strategies to conservatively and
progressively estimate that count. Query-dependent versions
of dominance have also been considered for routes/paths in
multi-attribute road networks [49,42].

2.3 RNN Heat-map

Specified a query location q in the product space, the reverse
nearest neighbor (RNN) query [41] identifies the products
that have q as their nearest neighbor across P ∪ {q}. These
products form the RNN set of q. The problem has been ad-
dressed in 2-dimensional [67,90], multi-dimensional [74],
and arbitrary metric spaces [6,7], as well as in uncertain da-
tabases [13] and spatial influence studies [82].

Sun et al. [68] propose the RNN heat-map for
2-dimensional product sets. That is, they partition the prod-
uct plane, such that every possible query location q in a
partition has the same RNN set. Defining the influence of
a partition as the cardinality of its RNN set, and coloring
the partition according to that cardinality, they produce a
heat-map that represents (spatial) influence at any location
in the product plane. The setting and the produced heat-map
are very different from ours. First, the RNN heat-map is de-
fined in the same domain as the products (not the user spec-
trum). Second, it measures spatial influence which depends
on physical distance (as opposed to competitiveness, which
relies on utility and preference relations). In addition to solv-
ing a different problem, the work on RNN heat-map assumes

that the NN-circle for every product p ∈ P (i.e., the circle
with center at p and radius equal to the distance between p
and its nearest neighbor) is pre-computed. In contrast, other
than a general purpose index on P , our algorithms require
no pre-computation. Finally, unlike our work, the technique
in [68] is limited to two dimensions (which is reasonable,
given the intended location-based service applications of the
RNN heat-map).

2.4 Other Related Work

Our heat-map is effectively a data-driven partitioning (and
“coloring” with competitiveness values) of the user spec-
trum. The most well-known data-driven partitioning of a do-
main is the Voronoi diagram [52]; the product space is par-
titioned into Voronoi cells, where each cell corresponds to a
product p ∈ P , such that any point in the cell has p as its
nearest neighbor across P . This property has been used to
accelerate nearest neighbor search in Euclidean space [63],
road networks [40], and uncertain databases [93]. For in-
stance, Sharifzadeh and Shahabi [63] embed the Voronoi di-
agram into an R-tree to reduce the I/O complexity of nearest
neighbor processing in Euclidean space. Remotely, that is
similar to a side-application of our heat-map in accelerating
top-k search (Section 6).

Competitiveness can be seen as a discrete elevation sur-
face over the user spectrum, represented as a heat-map.
Our task is to produce that surface/heat-map. Instead, Wu
et al. [83] define a problem (in the context of computa-
tional lead-finding and fact-checking) where an elevation
surface is already given, and they seek to find m represen-
tative points on that surface. The representatives must sat-
isfy a triple objective: have high elevation, be far from each
other (in order to be diverse), and be representative of the
elevation in their neighborhood (i.e., have similar elevation
to nearby points on the surface). In that work, the elevation
surface is given (whereas in our case the competitiveness
“surface” is the output) and the aim is to select m represen-
tative points on it (our output includes no representatives).
Furthermore, the problem in [83] is NP-hard, thus resorting
to approximate (greedy) and heuristic solutions (hill climb-
ing and k-median-like approaches).

Studies on regret-minimizing sets (RMS) produce an
m-sized representative subset S ⊂ P for a given integer
m, which tries to satisfy as it best can any possible user
preference (i.e., weight vector). The original RMS formu-
lation [53] defines the regret ratio for a weight vector as
the relative difference between the utility of the best prod-
uct in S and the best product in the entire P . The objective
is to minimize the maximum regret ratio for any possible
weight vector. Subsequent research has considered the orig-
inal RMS [86,9], as well as variants, such as k-RMS [17,
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8], where the regret ratio is defined based on the utility dif-
ference between the best product in S and the top-k-th in P .
Regret has also been considered in terms of the rank of prod-
ucts (instead of utility); e.g., the objective in [10] is to com-
pute the minimal subset S which contains at least one of the
top-k products for any possible weight vector. RMS and its
common variants are NP-hard/NP-complete for d > 2 [85,
8], hence research has focused on approximate solutions.
The RMS stream of work is fundamentally different from
ours. First, our objective is to quantify the competitiveness
of the dataset (not to compute a set of representative prod-
ucts). Second, our approaches are all exact (as opposed to
approximate for RMS). Third, our technical challenges re-
late to processing efficiency (whereas in RMS the quality of
approximation and the proof of error bounds is a main con-
sideration). Finally, a side-contribution of our work hints to
top-k query acceleration, but that is for exact top-k process-
ing (not approximate, like in the RMS line of work).

Finally, measuring the competitiveness of a market has
been considered in the areas of economics and business
management, albeit in a very different context [18,33,30].
The metrics used in those areas are concerned with the mar-
ket shares of the largest firms to assess how oligopolis-
tic the market is, the price-cost margins and their rela-
tion to competition, whether there is insufficient or exces-
sive entry of products, etc. In contrast, we consider specif-
ically multi-attribute product sets that are being browsed
by multi-objective preference queries. To our knowledge,
no past work assesses the competitiveness of datasets un-
der that prism.

3 Preliminaries

In this section, we first formalize our problem and provide
the practical rationale behind the measures and decisions it
entails (in Section 3.1). Then, in Section 3.2, we specify
technical problem settings, such as data storage and index-
ing.

3.1 Formalization and Rationale

Let the dataset P comprise all products available in the mar-
ket, where each product p ∈ P is associated with d attributes
(dimensions), i.e., p = (p[1], p[2], ..., p[d]), and d ≥ 2.
Without loss of generality, we assume that the attributes are
non-negative and that higher values are preferred on each di-
mension. A user’s preferences are characterized by a weight
vector w = (w[1], w[2], ..., w[d]), where the i-th weight in-
dicates the significance of the i-th product attribute to the
user, and takes a real value in [0, 1]. This is in line with
the ubiquitous linear utility model, where the suitability of a
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Fig. 2 User spectrum and heat-map cells for λ = 4

product to the user is defined as the dot product w · p, i.e.,

Uw(p) = w · p =

d∑
i=1

p[i]w[i]

This linear type of utility has been the most proliferate since
the inception of utility modeling [39,23] and, importantly,
it has been shown by user studies to capture effectively the
way real users assess the suitability of multi-attribute prod-
ucts [59].

In the above model, the magnitude |w| of the weight
vector is unimportant, since Uw(p) (being the dot product
of w and p) is directly proportional to |w| for any prod-
uct [75,36]. We thus follow the common convention that∑d
i=1 w[i] = 1 for every user/weight vector [16,35,76,66].

That is, the user spectrum, i.e., the domain of all possible
user preferences, is the simplex defined by

∑d
i=1 w[i] = 1

and w[i] ∈ [0, 1],∀i ∈ [1, d]. For d = 2, the user spectrum
is the diagonal line segment between points (0, 1) and (1, 0)

in Figure 2(a). For d = 3, it is the shaded triangle in Fig-
ure 2(b), etc.

Since utility depends on the weight vector, the compet-
itiveness of the market (i.e., of the dataset) ought to be ex-
pressed in relation to each different part of the user spec-
trum. Thus, we represent competitiveness in the form of a
heat-map, which partitions the spectrum into cells. We are
to compute a competitiveness value for each cell, for an ap-
propriate competitiveness measure (to be discussed shortly).

To initialize the heat-map, we partition each axis of the
spectrum into λ equal ranges; λ is an application-specified
parameter that controls the granularity of the heat-map. For
ease of presentation, we assume that it is a power of 2. The
imposed slicing of the user spectrum produces the heat-map
cells. Assuming λ = 4, Figure 2 demonstrates the 4 cells
(segments along the diagonal) produced in d = 2, and the
16 cells (triangles in the shaded surface) produced in d = 3.
Generally, a cell c is the part of the user spectrum bounded
by d conditions of the form Li ≤ w[i] ≤ Hi for i ∈ [1, d],
where [Li, Hi] is a range along the w[i] axis. For example,
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the cell that contains vector w in Figure 2(b) corresponds to
[0, 0.25]× [0.25, 0.5]× [0.5, 075].

Having partitioned the user spectrum, we may now “lo-
calize” the measuring of competitiveness per cell. Given
a cell c, we must first determine which products matter,
preference-wise, for weight vectors that lie within c. The
standard multi-objective operators, like traditional top-k and
k-skyband computation, since their early steps [16,55], have
considered more than just the top-utility product, recogniz-
ing that a user’s decision may also involve several runner-
ups. Concordantly, we adopt parameter k from the literature,
and address the general k ≥ 1 case. In particular, we con-
sider that the products which determine competitiveness for
preferences in c are those that belong to the rk-skyband for c,
i.e., those that are not r-dominated by k or more other prod-
ucts. As adapted from [19,50], r-dominance and rk-skyband
are defined as follows.

Definition 1 Given a convex region R in the user spec-
trum, a product pi r-dominates another product pj , denoted
as pi �R pj , if and only if ∀w ∈ R, Uw(pi) ≥ Uw(pj), and
∃w ∈ R, Uw(pi) > Uw(pj).

Definition 2 Given a positive integer k and a convex region
R in the user spectrum, the rk-skyband of datasetP is the set
of products pj ∈ P for which |{pi ∈ P : pi �R pj}| < k.

The reason we adopt this definition is because (i) it ac-
counts for every possible preference in c, (ii) the rk-skyband
is guaranteed to hold the top-k products for any weight vec-
tor w ∈ c, and (iii) it combines effectively elements from
both the standard notions of utility and dominance [19,50,
46]. In the following, we denote the rk-skyband for c as
RKS(c).

The next formalization step is to determine intuitive and
sensible measures of competitiveness for each cell c in the
heat-map. We use the applications described in Introduction
as a guide, and introduce two categories of measures:
Utility-based: Given that the utility function captures how
well the user preferences are met, probably the most natu-
ral indication of competitiveness for c is the utility of prod-
ucts in RKS(c). Assigning a single utility value to c, how-
ever, requires appropriate aggregation. First, there are mul-
tiple products in RKS(c), and second, even in isolation,
the utility Uw(p) of each of these products varies for dif-
ferent weight vectors in c. While alternative aggregations
are possible (and supported by our framework), we choose
as most indicative a formulation that aligns best with our
intended applications. Specifically, (on the front of market
analysis) our measure represents a for-granted utility that
any of the possible top-k products would have for any pref-
erence in c. As such, it also serves (on the front of busi-
ness development) as a lower bound for the utility a new
product should have if it aspires to be among the top-k

for some preferences in c. We denote it as MaxMink(c),
and define it as follows. For each product p ∈ RKS(c),
we compute p’s minimum possible utility for any w ∈
c, i.e., minw∈c Uw(p). MaxMink(c) is the k-th largest
minw∈c Uw(p) value across all p ∈RKS(c). Formally, if op-
erator maxk(.) returns the k-th largest from a set of values,
MaxMink(c) = maxkp∈RKS(c) minw∈c Uw(p). Competi-
tiveness aside, MaxMink(c) is a guaranteed lower bound
of the top-k-th utility in P for any w ∈ c. This property
enables an interesting side-application of our work, as we
explain in Section 6.
Competition-based: An alternative approach to define
competitiveness, is to capture how intense the competition
is among the candidate products to serve the users repre-
sented by c. Measuring the steepness of competition among
products is essential for the understanding/analyzing of mar-
ket dynamics, but also for determining the target regions in
the user spectrum for a new product (e.g., low competition
cells). Innately, a large number of products in RKS(c) in-
dicates that there is a large concentration of high-ranking
competitors for the same part (cell) of the user spectrum,
and vice versa. Therefore, a first measure in this category
is the cardinality |RKS(c)|. Another related measure is
the total number of r-dominance relations between prod-
ucts in RKS(c), denoted as #DR(c). Formally, #DR(c)
= |{(pi, pj) ∈ RKS(c)2 : pi �c pj}|. We expect the two
measures (|RKS| and #DR) to be correlated, but we defer
this investigation to our empirical study.

We consider the described measures of competitive-
ness as the most natural in multi-objective settings,
yet our methodology may support more complex or
application-specific alternatives, e.g., definitions that com-
bine MaxMink(c) and |RKS(c)| into a single formula.
For instance, when looking for opportunities for busi-
ness growth, cells with both low MaxMink(c) and low
|RKS(c)| could represent low-hanging fruits in the user
spectrum. Specified a competitiveness measure, our prob-
lem is defined as follows.

Problem 1 Given a dataset P that represents the products
in the market and parameters k and λ, produce a heat-map
of the user spectrum where each cell is associated with its
competitiveness value.

3.2 Problem Setting

According to the majority of multi-objective decision sup-
port applications [37], and given the dimensionality curse
that plagues their usefulness for high d [31,92,51], we fo-
cus on moderate dimensionalities (e.g., up to 7-8 dimen-
sions). We consider large datasets, i.e., cases where P in-
cludes a considerable number of products. To deal with the
scale of P , we assume a general purpose index on it, such
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as a standard R∗-tree [11]. Given the typical RAM sizes in
commodity machines, we keep the index and the dataset in
memory. The main performance determinant is computation
time, with memory overhead being an additional considera-
tion.

Other than a general purpose index, our methods rely
on no pre-computation. Instead, our algorithms perform all
required processing at query time. Should an application im-
pose predicates on product attributes (e.g., hotels with clean-
liness rating above a certain threshold), the predicates can
first be effected using the index, and our methods be sim-
ply executed on the selected part of the index and dataset.
By default, however, we assume that Problem 1 takes into
account the entire dataset P .

To assist in the following, Table 1 serves as a quick ref-
erence for commonly used notation.

Notation Description
P Dataset (the set of products in the market)
d Dimensionality (the number of product attributes)
p A product p = (p[1], p[2], · · · , p[d]) in P
w A weight vector w = (w[1], w[2], · · · , w[d])
Uw(p) Utility of product p according to w
λ The heat-map’s granularity parameter
c A heat-map cell (i.e., a region in the user spectrum)

RKS(c) The rk-skyband for cell c
MaxMink(c) MaxMin k-th utility
|RKS(c)| No. of products in RKS(c)
#DR(c) No. of r-dominance relations in RKS(c)

RKS(N ) Superset of the rk-skyband for node N
T (N) Threshold for node N
Uk

w Utility of the top-k-th product for w

Table 1 Notation

4 Processing Algorithms

Having defined our problem and objectives, our next consid-
eration is efficient processing, i.e., producing the heat-map
in reasonable time. This is an important practicality determi-
nant, since our motivating scenarios often entail exploratory
analysis and potentially repetitive trials for different param-
eters (e.g., k, λ, etc).

As elaborated in Section 3.1, for any of the competitive-
ness measures, the products that matter preference-wise for
a cell c are in its rk-skyband. We therefore focus our algo-
rithmic design on the efficient computation of RKS(c) for
every cell in the heat-map.

4.1 Baseline

A straightforward approach (denoted as BL) is to execute a
standard rk-skyband computation algorithm for every cell.

We adopt the algorithm in [50], as it applies directly to gen-
eral k ≥ 1. The standard rk-skyband operator was formu-
lated for a convex polytope. Each cell c in the heat-map is
such a polytope. The existing r-dominance test reduces to
utility comparisons for the extreme vertices of c. Specifi-
cally, given two products2 pi and pj , if Uv(pi) ≥ Uv(pj) for
every extreme vertex v of c, then pi r-dominates pj . If their
utility order is reversed for at least one extreme vertex, then
none r-dominates the other.

With RKS(c) in hand, computing |RKS(c)| and
#DR(c) is straightforward. Computing MaxMink(c), on
the other hand, requires finding for each p ∈ RKS(c) the
minimum Uw(p) for any w ∈ c. Lemma 1 demonstrates how.

Lemma 1 Given a product p and a cell c, the minimum
utility Uw(p) across all w ∈ c is achieved for one of c’s
extreme vertices.

Proof Let c’s extreme vertices be v1, v2, ..., vm. From the
convexity of c, it follows [12] that any w ∈ c can be ex-
pressed as a linear combination w =

∑m
i=1 αivi, where∑m

i=1 αi = 1 and αi ∈ [0, 1],∀i ∈ [1,m]. Without loss
of generality, assume that v1 ·p ≤ vi ·p,∀i ∈ [2,m]. It holds
that:

v1 · p = (

m∑
i=1

αi)v1 · p = α1v1 · p + α2v1 · p + ...+ αmv1 · p

≤ α1v1 · p + α2v2 · p + ...+ αmvm · p = w · p

In other words, Uv1
(p) ≤ Uw(p) for every w ∈ c.

Performance-wise, the baseline invokes an rk-skyband
algorithm for each and every cell in the heat-map, and is
expected to be inefficient (if practical at all) because (i) it is
unable to share computations among rk-skyband derivations
for different cells, and (ii) even for a single cell c, it needs to
consider numerous pairs of products, i.e., to perform numer-
ous r-dominance tests. In particular, letting n be the number
of products considered during RKS(c) computation (for a
single cell),3 the specific call of the rk-skyband algorithm
performs O(n2) r-dominance tests.

4.2 Computation Sharing Algorithm

The algorithm we develop in this section cannot resolve the
second issue above, but it makes a major leap to address
the first, i.e., to effectively share computations among the
rk-skyband derivations for different cells. It owes its name
to that feature, i.e., Computation Sharing Algorithm (CSA).

2 Without loss of generality, we assume that no pair of products have
identical attributes in all dimensions.

3 rk-skyband computation by [50] follows the general
branch-and-bound paradigm using the index on P; n here refers
to the number of products popped from its search heap and considered
for inclusion into RKS(c).
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Fig. 3 Split of the root in d = 3

4.2.1 Basic CSA

The key idea is that if a product pi r-dominates another prod-
uct pj in cell c, the same is likely to hold in cells that lie
near c in the user spectrum. Therefore, instead of perform-
ing r-dominance testing per cell, it would be computation-
ally beneficial to cluster hierarchically the cells according
to their position in the user spectrum, and determine the
r-dominance relation between pi and pj in as high a level
in that hierarchy as possible. This way, the r-dominance test
at the higher level can be effectively reused in the RKS(c)
derivation for any underlying cell.

The hierarchical structure we design, termed simplex
pyramid, is a balanced tree where every node is a convex
region in the user spectrum. The root corresponds to the en-
tire spectrum, while the leaves to the cells of the heat-map.
Conceptually, it is formed in a top down manner via recur-
sive splits. Specifically, each internal node N corresponds
to the part of the user spectrum bounded by d conditions of
the form Li ≤ w[i] ≤ Hi for i ∈ [1, d]. N ’s children are
derived by splitting its region according to d hyper-planes,
where the i-th hyper-plane is perpendicular to the w[i] axis
and has equation w[i] = Hi−Li

2 . In other words, we split
each [Li, Hi] range into two. Assuming d = 3, Figure 3
demonstrates the split of the root (entire spectrum), which
produces 4 children (triangles) shown with bold boundaries.
The splitting continues recursively, until all leaves of the
pyramid are at depth log2(λ); the nodes (leaves) at that depth
are the cells of the heat-map. Lemma 2 offers insight in the
structure of the simplex pyramid, showing that at depth h
there are

(
2h−1+d

d

)
−
(
2h

d

)
nodes.

Lemma 2 In general dimensionality d, there are(
2h−1+d

d

)
−
(
2h

d

)
nodes at depth h of the simplex pyramid.

Proof Without loss of generality, in our proof we consider
an open-set representation of the nodes. A node at depth h
of the simplex pyramid is expressed as:{ ∑d

i=1 wi = 1,
ni

2h
< wi <

ni+1
2h

,where 0 ≤ ni ≤ 2h − 1, ni ∈ N0.
(1)

That is equivalent to:

{ ∑d
i=1

ni

2h
< 1,∑d

i=1
ni+1
2h

> 1.
(2)

For every i ∈ [1, d], ni is a non-negative integer, hence
2h − (d− 1) ≤

∑d
i=1 ni ≤ 2h − 1. Therefore, finding how

many nodes are at depth h is the same as finding how many
solutions there are in the following system of inequalities:

{
2h − (d− 1) ≤

∑d
i=1 ni ≤ 2h − 1,

0 ≤ ni ≤ 2h − 1, ni ∈ N0.
(3)

Note that the number of solutions to

{∑d
i=1 ni = a,where 0 ≤ ni ≤ a, ni ∈ N0,

a ∈ N0
(4)

is the number of combinations
(
a+d−1
d−1

)
[27]. There-

fore, the number of solutions to equation (3) is∑2h−1
i=2h−(d−1)

(
i+d−1
d−1

)
. Letting L = 2h − (d − 1)

and H = 2h − 1, and keeping in mind the property(
i+d−1
d−1

)
+
(
i+d−1
d

)
=
(
i+d
d

)
, the number of solutions (and

therefore the number of nodes at depth h) is:∑2h−1
i=2h−(d−1)

(
i+d−1
d−1

)
=
∑H

i=L

(
i+d−1
d−1

)
=
[∑H

i=L

(
i+d−1
d−1

)]
+
(
L+d−1

d

)
−
(
L+d−1

d

)
=
[∑H

i=L+1

(
i+d−1
d−1

)]
+
(
L+d−1
d−1

)
+
(
L+d−1

d

)
−
(
L+d−1

d

)
=
[∑H

i=L+1

(
i+d−1
d−1

)]
+
(
L+d
d

)
−
(
L+d−1

d

)
=
[∑H

i=L+2

(
i+d−1
d−1

)]
+
(
L+d
d−1
)
+
(
L+d
d

)
−
(
L+d−1

d

)
=
[∑H

i=L+2

(
i+d−1
d−1

)]
+
(
L+d+1

d

)
−
(
L+d−1

d

)
...
=
(
H+d
d

)
−
(
L+d−1

d

)
=
(
2h−1+d

d

)
−
(
2h

d

)
,

which completes the proof.

A direct corollary that follows from Lemma 2 for h =

log2(λ), is that the total number of cells in the heat-map is(
λ−1+d
d

)
−
(
λ
d

)
.

After initializing an empty simplex pyramid, CSA com-
putes the traditional k-skyband of P using some standard
algorithm, e.g., BBS [55]. By definition, the rk-skyband for
any region in the user spectrum is a subset of the k-skyband,
i.e., members of the latter are the only products we need
to consider henceforth. For each of these products p, CSA
computes the dominance count (i.e., the number of other
products that dominate p), and records all counts in an array.
That array is stored in the root of the pyramid (as a constant),
and replicated into each of the other nodes (as an initializa-
tion, to be updated later).

In the next phase, CSA considers every pair of products
(pi, pj) from the k-skyband that do not (traditionally) domi-
nate each other, and inserts these pairs into the pyramid one
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by one. To insert a pair (pi, pj), CSA traverses the pyramid
in a top-down fashion, starting with the root. For every child
node N of the root, we perform the standard r-dominance
test described in Section 4.1. If one of the products in the
pair, say, pj is found to be r-dominated by the other (i.e.,
by pi), we increment the dominance count of pj in the array
of N and in the arrays of all nodes in the sub-tree under
N , without any r-dominance testing.4 In contrast, if the test
determines that there is no r-dominance relation between pi
and pj , no count increment is made in N ’s array, and the
insertion routine is invoked recursively in its children (if N
is already a leaf, no recursive call is made). At any point, a
product’s dominance count in the array of a node N indi-
cates the total number of products found so far to dominate
or r-dominate it in N . When all pairs have been inserted,
the array in each leaf of the pyramid (i.e., in each cell c of
the heat-map) provides RKS(c); specifically, RKS(c) in-
cludes those and only those products with dominance count
smaller than k.

A useful enhancement is that when the dominance count
of a product p in node N reaches k, we deem the product as
eliminated for N , i.e., p cannot be in the rk-skyband for N
or for any node in its sub-tree. Any subsequent invocation of
the insertion routine in N for a product pair that includes p
will be ignored (no r-dominance testing will take place and
no insertion attempt will be made in the descendants of N ).

A note about the basic CSA algorithm is that the or-
der it considers the product pairs is not important. The rea-
son is that, given a level of the pyramid, the hyper-planes
Uw(pi) = Uw(pj) defined for each of the pairs (pi, pj) are
expected to cut through a similar number of nodes in that
level, as suggested by the zone theorem [24]; given an ar-
rangement of n hyper-planes in a d-dimensional space, and
another, new hyper-plane in the same space, the zone theo-
rem states that the latter hyper-plane cuts through O(nd−1)

cells of the arrangement. It follows that the number of nodes
that lie completely on either side of these hyper-planes (i.e.,
the nodes where one of the products is found to r-dominate
the other) is similar too. Therefore, the number of domi-
nance count increments per level (and, by extension, in the
entire pyramid) is expected to be similar for every product
pair considered.

4.2.2 Extended CSA

Here we present CSA+, an extended version of CSA that
aims to reduce the number of r-dominance tests by exploit-
ing the transitivity of the dominance/r-dominance relations.

CSA+ initializes an empty simplex pyramid and starts,
as per normal, by computing the k-skyband of P . However,
at that stage, it also computes the dominance graph, Γ ; that

4 If pi r-dominates pj for N , the same holds for every partition of
N too.

is a directed acyclic graph, which represents every (tradi-
tional) dominance relation as a directed edge from the dom-
inating product to the dominated one. Every node N in the
pyramid implicitly inherits Γ from the root, but it addition-
ally keeps a delta-graph, ∆(N), which records (in the form
of directed edges) all the r-dominance relations inN discov-
ered during CSA+ execution. A product’s sum of in-degrees
in Γ and in ∆(N) is the product’s dominance count in N ,
as defined previously for CSA.

Inserting a product pair (pi, pj) in a node N is the same
as in CSA. However, when a product in the pair, say pi,
r-dominates the other (i.e., pj), we do not only add an edge
in ∆(N) from pi to pj , but also from pi to any node po
that is dominated or r-dominated by pj (as captured in Γ
and ∆(N), respectively). This is the main enhancement of
CSA+ over CSA, which helps determine some r-dominance
relations (thus increase dominance counts and, in turn, bring
products closer to elimination for N ) without r-dominance
testing. Every new edge added to∆(N) is also copied to the
delta-graphs in the sub-tree under N in the pyramid.

Extra care is required in order to properly exploit transi-
tivity. CSA+ may add edges, like pi → po in our example,
without yet having considered the pair (pi, po). Therefore,
before inserting any product pair in a node N , we need to
look into ∆(N) and ignore the pair (for N and its sub-tree)
if there is already an edge between the specific two products.
As per usual, we also ignore the pair if either of the products
already has a dominance count of k.

Unlike CSA, in CSA+ the order that pairs are con-
sidered does matter, exactly because it aims to exploit the
transitivity of dominance/r-dominance relations. Intuitively,
products with small (traditional) dominance counts in Γ are
likely to r-dominate many others. Thus, we order the prod-
ucts in increasing (traditional) dominance count and form
pairs between the first product and each of the subsequent
products in the order, then between the second product and
all its succeeding products, and so on.

Algorithm 1 summarizes the CSA+ process. After sort-
ing in Line 4, we assume that pi refers to the i-th product
in the imposed order. Regarding Lines 10 and 16, recall that
a product’s dominance count in a node N is the sum of the
product’s in-degrees in Γ and in ∆(N).

4.3 Mapping-based Dominance Algorithm

CSA and CSA+ insert into the pyramid every pair of prod-
ucts from the k-skyband that do not dominate each other,
i.e., letting n be the cardinality of the k-skyband, they in-
sert O(n2) pairs. The mapping-based dominance algorithm
(MDA) removes this combinatorial requirement by largely
individualizing the assessment of products. Specifically, for
the most part, it abandons the pair-based r-dominance tests;
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Algorithm 1 CSA+(P, k, λ)
1: Initialize the simplex pyramid according to λ
2: S ← the k-skyband of P
3: Compute the dominance graph Γ for products in S
4: Sort the products in S in increasing dominance count order
5: for each (pi, pj) ∈ S2, i < j and pi does not dominate pj do
6: Insert(pi, pj , N) . Insert pair (pi, pj) in node N

7: for each leaf c in the pyramid do . Get RKS(c) using ∆(c)
8: Initialize empty RKS(c)
9: for each p ∈ S do

10: if the in-degree of p in ∆(c) ∪ Γ is < k then
11: Insert p into RKS(c)

12: Compute competitiveness for c based on RKS(c)

13: Routine Insert(pi, pj , N)
14: if edge pi → pj or pj → pi is already in ∆(N) then
15: Return
16: if the in-degree of pi or pj in ∆(N) ∪ Γ is ≥ k then
17: Return
18: if pi r-dominates pj in N then
19: Add pi → pj to ∆(N)
20: for each po such that pj → po ∈ ∆(N) ∪ Γ do
21: Add pi → po to ∆(N)

22: Add edges in Lines 19 and 21 to delta-graphs in N ’s sub-tree
23: else if pj r-dominates pi in N then
24: Handle similarly to Lines 19-22 with pj as dominating product
25: else . No r-dominance between pi and pj in N
26: for each child of node N do
27: Insert(pi, pj , N.child)

instead, it quantifies the potential of a product p to enter the
rk-skyband in more absolute terms.

Given a product p and a node N in the simplex pyramid,
MDA builds on the minimum and the maximum possible
utility that p may achieve for any w ∈ N ; we denote these
values as LUN (p) and HUN (p), respectively. LUN (p) is
computed by applying Lemma 1 to node N instead of a cell
c (recall that, like c, every node N is a convex polytope).
HUN (p), on the other hand, is equal to maxi∈[1,m] Uvi(p),
where v1, v2, ..., vm are the extreme vertices of (the polytope
that corresponds to) N , as follows from Lemma 3.

Lemma 3 Given a product p and a node N in the simplex
pyramid, the maximum utility Uw(p) across all w ∈ N is
achieved for one of N ’s extreme vertices.

Proof The proof is identical to Lemma 1, subject to replac-
ing ‘≤’ with ‘≥’, and c with N .

This way, any product can be mapped to a utility range
[LUN (p), HUN (p)] for node N . If for two products pi, pj it
holds that LUN (pi) ≥ HUN (pj), product pi is guaranteed
to r-dominate pj in N . That said, note that this condition
is sufficient but not necessary, i.e., it is still possible for a
product to r-dominate another, although their utility ranges
overlap. Figure 4 demonstrates such a situation in d = 2,
showing the utility of two products, p1 and p2, in a node
N . To be able to visualize, we use the ratio w[1]

w[2] to express

Uw(p)

w[2]

10

w[1]

N

HUN(p1)

LUN(p1)
LUN(p2)

HUN(p2)

Fig. 4 Range overlap, although Uw(p1) ≥ Uw(p2), ∀w ∈ N

the user spectrum (horizontal axis), which is an alternative,
yet equivalent representation of the diagonal in Figure 2(a);
every weight vector w on the diagonal has a one-to-one cor-
respondence with a ratio w[1]

w[2] , i.e., with a vertical line in Fig-
ure 4. Although the utility ranges of p1, p2 overlap, for every
w ∈ N (i.e., for every vertical line inside N ) the utility of
p1 is higher, thus it r-dominates p2 in N .

Nonetheless, while comparing utility ranges is not
a panacea, observe that a product’s range for N is
fixed and irrelevant to other products. That is, range
[LUN (p), HUN (p)] may be computed once and used di-
rectly anytime p needs to be compared against other prod-
ucts for N .

4.3.1 Basic MDA

The main idea in MDA is to employ a simplex pyramid built
on top of the heat-map, but to insert individual products into
it, as opposed to pairs of products. In every node N of the
pyramid, MDA maintains a superset of the rk-skyband for
N (over the products inserted so far), denoted as RKS(N ).
The k-th largest LUN (p) value in RKS(N ) is denoted as
T (N) and serves as an admission threshold to RKS(N ).
When the insertion routine is invoked in N for a product
p, MDA computes LUN (p) and HUN (p). If HUN (p) is no
larger than T (N), p is guaranteed to be r-dominated by at
least k products in RKS(N ), and hence it cannot be in the
rk-skyband for N or for any node in N ’s sub-tree; p is elim-
inated for N and no insertion is attempted in N ’s children.
On the other hand, if HUN (p) > T (N), we (i) include p
in RKS(N ), (ii) update T (N), and (iii) if N is an internal
node, invoke the insertion routine for p in N ’s children.

MDA inserts the k-skyband products into the simplex
pyramid one by one. The recursive insertion routine is not
invoked at the root (whose rk-skyband is anyway the full
k-skyband), but directly in its children. After the last prod-
uct is inserted, the RKS(c) at each cell (i.e., at each leaf
of the pyramid) is guaranteed to be a superset of RKS(c).
However, we may tighten it further. We go through RKS(c)
and remove products p where HUc(p) ≤ T (c). That is be-
cause T (c) might have increased since p was first included
in RKS(c) (due to subsequent insertions).
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To complete the process, we derive RKS(c) for every
cell c, by considering only the products in RKS(c); it is
only at this stage that we perform traditional r-dominance
testing. To juxtapose that last step with the baseline in Sec-
tion 4.1, note that RKS(c) is expected to be a tight super-
set of RKS(c), and therefore much smaller than the entire
k-skyband. We perform this last step as follows.

Consider a cell c. We initialize an empty RKS(c) set
and examine the products in RKS(c) in decreasing HUc(p)
order. Note that HUc(p) is not just an upper bound, but an
actual utility that p achieves for some w ∈ c. Therefore,
if for two products HUc(pi) > HUc(pj), it is impossible
for pj to r-dominate pi in c. This means that (i) the k first
products can be directly placed into RKS(c), and (ii) any
subsequent product p can only be r-dominated by products
preceding it. Thus, it suffices to test p only against the prod-
ucts already in RKS(c); if r-dominated by fewer than k of
them, p is inserted in RKS(c) too (and is certain to remain
there). When all products in RKS(c) have been considered,
RKS(c) becomes final.

Crucial point: To offer perspective, a crucial point is
that, in effect, CSA and CSA+ maintain the rk-skyband for
every node in the simplex pyramid (while it is only required
for the leaves), thus wasting computations. MDA, on the
other hand, replaces the exact rk-skybands for internal nodes
N with fast-to-compute supersets (i.e.,RKS(N )) which en-
able efficient filtering, without compromising correctness.
Refinement, i.e., computation of exact rk-skybands, only
takes place for the leaves of the pyramid (i.e., for the cells
of the heat-map).

4.3.2 Enhanced MDA

Here we present the Enhanced MDA (MDA+). An issue
with basic MDA is that it inserts into the simplex pyramid,
top-down, each and every product from the k-skyband of P .
First, the number of these products may be large [31,55].
Second, the insertion order is global and common for all
nodes in the pyramid. This means that MDA may invoke the
insertion routine in a node N for products that are far from
making it into RKS(N ). Worse yet, even though a product
may make it initially into RKS(N ) (and thus be also recur-
sively inserted inN ’s children and, potentially, inN ’s entire
sub-tree), its HUN (p) might turn out to be much lower than
the final T (N), i.e., had this product been inserted at a later
order, it could have been eliminated directly forN and never
been propagated to N ’s sub-tree.

MDA+ individualizes the RKS(N ) computation pro-
cess, so as to (i) avoid propagating any product with
HUN (p) smaller than the final value of T (N) down to N ’s
sub-tree, and (ii) impose a node-specific order among in-
serted products that allows to safely eliminate products in a

branch-and-bound fashion, while still deriving a guaranteed
(and tight) superset RKS(N ) of the rk-skyband for N .

Initially, MDA+ computes the k-skyband of P , and re-
lays it to the children of the root in the simplex pyramid.
In each of the root’s children N , we derive RKS(N ) based
on the k-skyband products (we describe the derivation of
RKS(N ) shortly), and only when RKS(N ) is finalized, do
we relay it to N ’s own children. In each of N ’s children,
we compute its own RKS set based only on the product set
that was relayed to it (i.e., RKS(N )), and so on all the way
down to the leaves.

The routine to compute RKS(N ) in a node N (be it
internal or leaf) first sorts the product set relayed to it in de-
creasing HUN (p), and considers the products in that order.
The first k of them are directly inserted in RKS(N ). We
keep inserting in RKS(N ) the subsequent products p one
by one (making sure to update T (N) along the way) as long
as HUN (p) > T (N). We stop when we encounter the first
product p with HUN (p) ≤ T (N); p (and all products after
it) are unable to enterRKS(N ), thusRKS(N ) is now final.

When RKS(c) has been derived for all leaves in the
simplex pyramid (i.e., for all cells c), we use it to com-
pute the actual RKS(c), following the same technique as
the last step in MDA. Algorithm 2 summarizes the whole
MDA+ process. Observe that RKS(N ) computation hap-
pens in the recursive Insert() routine, all the way down to
the leaves/cells. Traditional r-dominance testing only takes
place at the very end (in Line 10) and only for the leaves.

In addition to benefits in response time, MDA+ also fea-
tures lower memory overhead. Since RKS(N ) computa-
tion happens atomically per node, a node’s RKS(N ) can
be dismissed once the RKS set of all its children has been
computed. Actually, with diligent implementation, MDA+

requires the geometric representation and RKS(N ) set for
only h = log2(λ) nodes at any point during execution (these
nodes correspond to a path from the root down to a leaf c).
While memory overhead is a secondary performance crite-
rion in our context, it is still a vital aspect that MDA+ has
a significant advantage over alternatives, as we show in the
experiments.

5 Time and Space Analysis

In this paper, we aim for practical implementations, and thus
focus on actual response time (and memory consumption)
on real and benchmark data. For completeness, however, in
this section we analyze the time and space complexity of
the baseline (BL) and of the enhanced algorithms from Sec-
tions 4.2 and 4.3 (i.e., CSA+ and MDA+).

Lemma 4 The time complexity of BL is

O

((
k lnd−1 |P|

d!

)2
·
((
λ−1+d
d

)
−
(
λ
d

)))
.
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Algorithm 2 MDA+(P, k, λ)
1: Initialize the simplex pyramid according to λ
2: S ← the k-skyband of P
3: for each child N of the root of the simplex pyramid do
4: Insert(S,N) . Insert product set S in node N
5: for each leaf c in the pyramid do . Get RKS(c) using RKS(c)
6: Initialize empty RKS(c)
7: for each p ∈ RKS(c) in decreasing HUc(p) order do
8: if RKS(c) has fewer than k products then
9: Insert p into RKS(c)

10: else if p is dominated by < k products in RKS(c) then
11: Insert p into RKS(c)

12: Compute competitiveness for c based on RKS(c)

13: Routine Insert(S,N)
14: Initialize empty RKS(N )
15: for each p ∈ S in decreasing HUN (p) order do
16: if RKS(N ) has fewer than k products then
17: Insert p into RKS(N )
18: else
19: T (N)← the k-th largest LUN value in RKS(N )
20: if HUN (p) > T (N) then
21: Insert p into RKS(N )
22: else
23: Break . RKS(N ) is finalized; go to Line 24
24: if N is an internal node then
25: for each child of node N do
26: Insert(RKS(N ), N.child)

Proof The expected cardinality of the k-skyband is
k lnd−1 |P|

d! [31]. Hence, computing the rk-skyband for a

cell requires O
((

k lnd−1 |P|
d!

)2)
r-dominance tests. Given

(from Lemma 2) that the heat-map comprises
(
λ−1+d
d

)
−
(
λ
d

)
cells, the stated complexity follows.

Lemma 5 The space complexity of BL is
O
((
λ−1+d
d

)
−
(
λ
d

))
.

Proof The space consumption of BL is dominated by the
size of the heat-map. A corollary of Lemma 2 is that the
heat-map comprises

(
λ−1+d
d

)
−
(
λ
d

)
cells, resulting in the

stated complexity.

The following lemma is essential for the analysis of
CSA+ and MDA+.

Lemma 6 The total number of nodes in the simplex pyra-
mid is O

((
λ−1+d
d

)
−
(
λ
d

))
.

Proof Let ξi be the number of nodes in the i-th level of the
pyramid, where i ∈ [0, h] and h = log2(λ) is the height of
the pyramid. For any d ≥ 2, each internal node is split by at
least one axis-perpendicular hyper-plane, and thus it has at
least two children. That is, ξi ≤ ξi+1

2 ,∀i ∈ [0, h − 1]. The
total number of nodes in the pyramid is:

ξh+ξh−1+ξh−2+· · ·+ξ0 ≤ ξh+
ξh
21

+
ξh
22

+· · ·+ ξh
2h

< 2·ξh

Since ξh =
(
λ−1+d
d

)
−
(
λ
d

)
, the lemma follows.

Lemma 7 The time complexity of CSA+ is

O

(
d−2
d−1 ·

(
k lnd−1 |P|

d!

)2
·
((
λ−1+d
d

)
−
(
λ
d

)))
.

Proof Given that the expected cardinality of the k-skyband
is k lnd−1 |P|

d! [31], CSA+ inserts into the simplex pyramid

O

((
k lnd−1 |P|

d!

)2)
product pairs.

The user spectrum is a (d− 1)-dimensional object,
partitioned in each pyramid level by axis-perpendicular
hyper-planes. The produced hyper-plane arrangement has
a dimensionality of (d − 1), and the cells of this arrange-
ment correspond to nodes in the specific pyramid level. In
a general (d− 1)-dimensional arrangement, the zone theo-
rem [24] states that out of all its O(nd−1) cells, a hyper-
plane cuts through only O(nd−2) of them. Hence, we ex-
pect that a hyper-plane cuts through only d−2

d−1 of the nodes
in a pyramid level. This means that, when inserting a prod-
uct pair (pi, pj) into the pyramid, the hyper-plane Uw(pi) =
Uw(pj) cuts through only d−2

d−1 of the nodes in each level,
i.e., r-dominance between pi and pj is unclear (and thus
the insertion routine needs to be recursively invoked) in
d−2
d−1 of the nodes. It follows that, for each product pair in-
serted into the pyramid, r-dominance tests are performed for
O
(
d−2
d−1 ·

((
λ−1+d
d

)
−
(
λ
d

)))
nodes in total. Given that the

number of inserted product pairs is O
((

k lnd−1 |P|
d!

)2)
, the

stated complexity follows.

Lemma 8 The space complexity of CSA+ is

O

((
k lnd−1 |P|

d!

)2
·
((
λ−1+d
d

)
−
(
λ
d

)))
.

Proof The space compexity of CSA+ is determined by the
(global) dominance graph Γ and the delta-graphs ∆(N)

(one per node of the pyramid). Each of these graphs rep-
resents pairwise r-dominance for O

(
k lnd−1 |P|

d!

)
products

and, thus, takes O
((

k lnd−1 |P|
d!

)2)
space. Given that there

are O
((
λ−1+d
d

)
−
(
λ
d

))
nodes in the pyramid, the lemma

follows.

Lemma 9 The time complexity of MDA+ is
O
(
k lnd−1 |P|

d! · log2
(
k lnd−1 |P|

d!

)
·
((
λ−1+d
d

)
−
(
λ
d

)))
.

Proof Considering that RKS(N ) is a tight superset of the
rk-skyband for N , we expect the bottleneck in MDA+ to
be the computation of RKS(N ) for each node in the sim-
plex pyramid. The product set relayed to a node N in-
cludes O(k lnd−1 |P|

d! ) products. The sorting of these prod-
ucts by HUN (p), and the use of a heap to maintain the
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threshold T (N), take O
(
k lnd−1 |P|

d! · log2
(
k lnd−1 |P|

d!

))
time each. Having O

((
λ−1+d
d

)
−
(
λ
d

))
nodes in the pyra-

mid, the stated complexity follows.

Lemma 10 The space complexity of MDA+ is
O
((
λ−1+d
d

)
−
(
λ
d

)
+ k lnd−1 |P|

d! log2(λ)
)

.

Proof The size of the simplex pyramid is proportional to
the total number of its nodes, i.e., O

((
λ−1+d
d

)
−
(
λ
d

))
. At

any point during execution, MDA+ requires the RKS(N )
set for log2(λ) nodes that form a path from the pyramid’s
root down to a leaf. Given that each of these RKS(N ) sets
includes O(k lnd−1 |P|

d! ) products, and adding the space oc-
cupied by the simplex tree, we derive the stated space com-
plexity.

6 Discussion: Side-applications

In addition to the focal applications that motivate our study
and are described in Introduction, our processing framework
has interesting side-applications.

Identifying outstanding competitors: The utility-based
(e.g., MaxMink) heat-map of P can be seen as a repre-
sentation of the utility of the dataset’s front-line in differ-
ent parts of the user spectrum. Therefore, if some prod-
uct p happens to achieve significantly higher utility than
MaxMink(c) in a cell c, this is a strong indication that p
may be an exceptional product. This, in turn, enables appli-
cations that seek to identify outstanding competitors in the
market. Observe that alternative aggregation measures could
be used instead of MaxMink in the heat-map, as well as
alternative aggregations for p’s utility over c (e.g., its av-
erage or minimum utility in c), but in all cases any prod-
uct that stands out utility-wise will certainly be in RKS(c).
For the determination of whether a product’s utility is suf-
ficiently higher than the (aggregate) utility in RKS(c) in
order to be deemed outstanding, we could adapt any com-
mon outlier definition [57,54]. Alternatively, we could re-
port the m products across the heat-map (for some m ≥ 1)
with the largest relative utility deviation from the respective
RKS(c).

Pre-computation for top-k query acceleration: The wide
adoption of the top-k query in multi-objective settings has
led to several methods for the pre-processing of a (static)
product set in order to accelerate ad-hoc top-k queries.
Early efforts exploit the convex hull properties [16], notions
of “many-to-one dominance” [87], and the use of materi-
alized ranked views [35,36,21]. A comprehensive cover-
age of these methods is provided in [29]. It turns out that
the MaxMink heat-map we produce offers a distinct and
promising approach to this problem.

p[2]

p[1]

w

0

Fig. 5 Using the MaxMink heat-map for top-k processing

Assume that, as pre-processing, we solve Problem 1 on
P and materialize its MaxMink heat-map. Let w be the
weight vector of an ad-hoc top-k query, and Ukw be the (orig-
inally unknown) utility of the top-k-th product for w. Us-
ing the heat-map as a look-up table, we can identify the
cell c where w falls and retrieve MaxMink(c). As ex-
plained in Section 3.1, Ukw is guaranteed to be no smaller
than MaxMink(c). This means that the top-k products for
w must be among those that satisfy the condition Uw(p) ≥
MaxMink(c), i.e., to products that lie above the hyper-
plane defined by

∑d
i=1 p[i]w[i] = MaxMink(c) in the

product space [75,60]. We may efficiently retrieve such
products with a range query using a general purpose index
on P , and subsequently compute their utilities in order to
determine the actual top-k among them.

Figure 5 presents an example in d = 2. Note that the
illustrated domain is the product space. The line that corre-
sponds to Uw(p) =MaxMink(c) is shown bold and solid,
and it is perpendicular to w. A range query on P for the
shaded area is guaranteed to retrieve the top-k set (k = 3

is assumed). The dashed line corresponds to Uw(p) = Ukw
(i.e., the actual utility of the top-k-th product for w) and is
guaranteed to be entirely within the shaded area.

Although this side-application is beyond the scope and
application goals of this paper, we consider it a promising di-
rection for future dedicated investigation; Figure 6 presents
some preliminary, yet encouraging results. We plot the com-
putation time of the sketched approach for 100 randomly
generated top-k queries on two real datasets (properly in-
troduced in Section 7) with λ = 32. Note that the reported
measurements do not include the time to produce the heat-
map, because in this setting it is assumed pre-computed.
As a yardstick, we include the standard branch-and-bound
top-k algorithm [73]. We observe a 2- to 3-fold improve-
ment in processing time.

Utility heat-map with heterogeneous granularity: An in-
teresting variant of Problem 1 is to enable a heterogeneous
heat-map granularity across the user spectrum, depending
on the dataset’s characteristics. Intuitively, a large RKS(c)
means that there are many competitive products for c, and
thus the aggregation of their utilities in a single value (by
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Fig. 6 Preliminary findings for top-k query acceleration

our competitiveness measure) may suppress their individ-
ual, more localized strengths. In that sense, if the cardinality
ofRKS(c) is too large, it may be fairer (to the top products)
and more informative (to the human analysts) to further par-
tition c.

In particular, instead of specifying λ, we may input an
integerm (which could be expressed, say, as a multiple of k)
and impose the requirement that the rk-skyband for each leaf
(i.e., cell) in the simplex pyramid includes no more than m
products. In effect, the splitting of nodes will be dynamically
decided (according to |RKS(N)|) and the resulting simplex
pyramid will be an unbalanced tree. Concordantly, the size
of the cells in the produced heat-map could vary greatly.

MDA+ suits well this variant of the problem, since it
anyway individualizes the RKS(N ) computation per node.
Specifically, after RKS(N ) is finalized for a node, and be-
fore it is propagated to N ’s children (i.e., before Line 24 in
Algorithm 2), if |RKS(N)| is no greater than m, the recur-
sion to stop at N and N be treated as a leaf of the simplex
pyramid, i.e., a cell of the heat-map. Given that RKS(N ) is
a superset ofRKS(N), the above process could unnecessar-
ily split a node when |RKS(N)| > m ≥ |RKS(N)|, but
that can be trivially resolved by merging the respective sib-
ling cells (i.e., reversing the slit) in a post-processing step.

7 Empirical Investigations

Our empirical investigations comprise two parts; case stud-
ies in Section 7.1, and performance experiments in Sec-
tion 7.2.

7.1 Case Studies

Our competitiveness measures draw directly from the prin-
ciples of multi-objective querying. To complement intu-
ition, however, in our first case study we empirically val-
idate their suitability. In particular, we use real datasets
with known ground truth characteristics, and check whether
our heat-maps can capture their pre-known strengths. Using

NBA player statistics for season 2020-21 [4], we extracted
3 datasets corresponding to Centers (98 players), Point
Guards (102), and Shooting Guards (123). In Figures 7(a),
7(b) and 7(c) we present their utility-based heat-maps for
k = 10 and λ = 16, using rebounds, assists and points
as the player attributes. Fact: Centers are typically skilled
at gathering rebounds; they may still score near the bas-
ket, but they rarely give assists [1]. Our heat-map in Fig-
ure 7(a) indeed captures that fact, demonstrating a particu-
lar strength of the Center dataset in rebounds (left corner).
Between their weaker aspects, i.e., assists and points, Cen-
ters are successfully drawn hotter in points (top corner).
Fact: Point Guards control the ball and make sure it gets
to the right player at the right time; they lead their team
in assists but, if open for a shot, they will take it to score
a few points [1]. The heat-map in Figure 7(b) accurately
draws that picture for Point Guards, illustrating assists as
their strongest ability (right corner), with point-scoring still
hotter than rebounds. Fact: Shooting Guards’ main objec-
tive is to score points; moving around the 3-point line (far
from the basket) they rarely gather rebounds, but may oc-
casionally give assists [1]. The heat-map in Figure 7(c) ef-
fectively captures these characteristics, with the top corner
(points) being clearly the hottest, followed by the right one
(assists). For completeness, in Figure 7(d) we present the
competition-based (|RKS|) heat-map for Centers.5 Fact:
Players in the same position (e.g., Centers) have the same
performance objectives, thus their statistics are correlated
around the position’s main skill (rebounds) [22]. When the
user is looking for the stereotypical Center (i.e., for pref-
erences close to the left corner in Figure 7(d)) there are
few star Centers, who overshadow most others; i.e., mini-
mal competition, and thus light coloring. When the user’s
preferences deviate from the norm for Centers (i.e., for pref-
erences further from the left corner and towards the middle
of the user spectrum) many mediocre Centers may appear
competitive, because they do well in secondary aspects for
the position, e.g., points and assists. The situation is simi-
lar/symmetric in the competition-based heat-maps of Point
Guards and Shooting Guards (omitted for brevity).

In our second case study, we aim for useful insights in
a real product and preference set, sourced from the TripAd-
visor portal [5]. The data include ratings for 1,850 hotels
on d = 7 aspects (namely, on value, room, location, clean-
liness, front desk, service, and business service), compris-
ing the product set P . The TripAdvisor data also include
text reviews and overall scores from actual users for these
hotels. We employed the preference learning technique in
[81] to mine the text and scores in the reviews to produce a
7-dimensional weight vector per user. The derived 137,563

5 The #DR heat-map is very similar to |RKS|, as we will elaborate
shortly.
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Fig. 7 Heat-maps for different playing positions in NBA
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(a) |RKS| competitiveness
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Fig. 8 |RKS| and #DR heat-maps for TripAdvisor hotels

weight vectors serve as a representative sample of user de-
mand.

We first focus on the hotel set P in isolation. For visual-
ization, we initially use only the first d = 3 hotel attributes,
i.e., ratings on value, room, and location. We set k = 10

and λ = 16, and present the utility-based (i.e., MaxMink)
heat-map in Figure 1(a) (appearing in the Introduction) and
the two competition-based (i.e., |RKS| and #DR) in Fig-
ure 8. There is a total of 256 cells, as can also be derived by
Lemma 2 for h = log2(λ) = 4 and d = 3.

A first observation is that the heat-maps for |RKS| and
#DR look very similar. To quantify/verify this, we form
a pair of values (|RKS(c)|,#DR(c)) for each cell c in
the heat-map, and compute the Pearson correlation coeffi-

cient6 [56]; the coefficient is 0.934. This strong correlation
is also evident in the full-dimensional heat-maps in d = 7

(where the coefficient is 0.852). To investigate the gener-
ality of this fact, Table 2 presents the Pearson correlation
coefficient between |RKS| and #DR for all benchmark
datasets we use (and describe) in Section 7.2, for the de-
fault parameters in our performance evaluation. We use the
real datasets (HOTEL, HOUSE, NBA) in their full dimen-
sionality, and the synthetic ones (CORR, INDE, ANTI) in
their default d = 4. Given the consistency of the correlation
across all datasets, we henceforth use #DR as the represen-
tative competition-based measure.

HOTEL HOUSE NBA CORR INDE ANTI
0.955 0.882 0.856 0.854 0.964 0.986

Table 2 Pearson correlation coefficient between |RKS| and #DR

In contrast, when we compare Figures 1(a) and 8(b)
we observe that utility-based competitiveness (MaxMink)
is very different from competition-based (#DR). Actually,
the Pearson correlation coefficient is -0.164 in d = 3, and
-0.144 in full dimensionality, indicating that the two mea-
sures are practically independent, a behavior that is consis-
tent in all benchmark datasets (results omitted for brevity).
This confirms that the two types of competitiveness assess
different aspects of the market, with the former measur-
ing the degree of user satisfaction in a cell, and the lat-
ter the intensity of competition among high-ranking prod-
ucts. Another interesting observation in this comparison is
that the contrast (differential) in nearby cells is much higher
in the competition-based heat-map, whereas transitions are
much smoother in the utility-based one. The reason is that,
in MaxMink(c), the utility of products in RKS(c) has a
direct proportionality to the cell’s coordinates. Instead, the
r-dominance relations between products (which determine
|RKS| and #DR) are not directly dictated by c’s coordi-
nates, but depend strongly also on the products’ relative po-
sitions in the product space.

Looking into the semantics of Figure 1(a) and
MaxMink, the deepest-colored cells indicate that the ho-
tel market caters best for users who prioritize value over
room quality and location. On the other hand, regarding the
choice of target regions for a new hotel, the MaxMink
heat-map suggests that it may be easier/cheaper to introduce
a high-ranking hotel when it is tailored to preferences in the
lighter-colored cells; recall that MaxMink(c) serves as a

6 The Pearson correlation coefficient for n value pairs (xi, yi) is
defined as rxy =

∑n
i=1(xi−x̄)(yi−ȳ)√∑n

i=1
(xi−x̄)2

√∑n
i=1

(yi−ȳ)2
, where x̄ is the mean

of xi values, and analogously for ȳ. It takes values between -1 (perfect
anti-correlation) and 1 (perfect correlation).
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(b) AvgMax competitiveness

Fig. 9 Other utility-based heat-maps for TripAdvisor hotels

lower bound for the utility a new product should have in or-
der to enter the top-k set for any preferences in c.

Turning to Figure 8(b) and #DR, we observe that (i)
there are many light-colored (i.e., low competition) cells,
and (ii) the light-colored cells are spread around the user
spectrum. These facts suggest, respectively, that there is am-
ple potential to set up a new hotel and, at the same time, that
there is flexibility in choosing the target clientele (and thus
in determining the intended niche) of the new hotel. Note
that combining findings from both heat-maps (for #DR and
for MaxMink) could provide a more holistic view on P ,
and thus lead to a better choice of target regions (e.g., cells
that are lightly-colored for both measures).

In the description of utility-based measures in Sec-
tion 3.1, we explained that assigning a utility value to
a cell c requires appropriate aggregation and that, al-
though MaxMink is intuitive and comes with a prac-
tical lower bound property, alternative aggregations are
possible. As a side-investigation, in Figure 9 we plot
utility-based heat-maps using two such alternatives. Specif-
ically, in Figure 9(a) we use MaxMaxk; letting opera-
tor maxk(.) return the k-th largest from a set of values,
MaxMaxk(c) = maxkp∈RKS(c) maxw∈c Uw(p). That is, in-
stead of representing a product p ∈ RKS(c) by its min-
imum possible utility in c, we represent it by the max-
imum. By its definition, MaxMaxk is an upper bound
of the top-k-th utility in P for any w ∈ c, and thus
its heat-map is a more optimistic representation of the
dataset’s utility “fringe” compared to MaxMink. On the
other hand, in Figure 9(b) we plot the AvgMax heat-map,
where AvgMax(c) = avgp∈RKS(c) maxw∈c Uw(p). The
MaxMaxk and AvgMax heat-maps are similar to Fig-
ure 1(a), as the measures are naturally correlated to
MaxMink (with Pearson correlation coefficients 0.945 and
0.951, respectively).

The final investigation in this case study brings in the
picture the preference profiles (d = 7) extracted from Tri-
pAdvisor reviews. Each of our (full-dimensional, normal-
ized) heat-maps can be seen as the probability mass func-

Parameter Tested and default values
Product set cardinality |P| 100K, 500K, 1M, 5M, 10M
Dimensionality d 2, 3, 4, 5, 6, 7
Parameter k 1, 5, 10, 20, 40
Granularity parameter λ 8, 16, 32, 64, 128

Product dataset CORR, INDE, ANTI,
HOTEL, HOUSE, NBA

Table 3 Tested values and defaults of problem parameters

tion (PMF) that defines the distribution of the market’s com-
petitiveness (under the respective competitiveness measure).
We may also obtain the PMF of the user demand by count-
ing the number of weight vectors (out of the 137,563 we
extracted) that fall in each cell. To assess the alignment be-
tween market competitiveness and user demand, we employ
two established measures of distribution similarity, i.e., the
Jensen–Shannon divergence [44] and the Bhattacharyya co-
efficient [14]. They both take values in [0, 1], but absolute
similarity corresponds to value 0 for the former, and 1 for
the latter. They evaluate to 0.6955 and 0.3639 when compar-
ing user demand withMaxMink, and to 0.6766 and 0.3815
when comparing user demand with #DR. These values in-
dicate that there is surely space and opportunities for new
hotels and for further alignment of the market with the user
demand.

7.2 Performance Experiments

In this section, we evaluate performance. As product set P ,
we use standard synthetic datasets, i.e., correlated (CORR),
independent (INDE), and anti-correlated (ANTI), that rep-
resent typical product distributions in multi-objective deci-
sions [15], as well as real datasets HOTEL, HOUSE, NBA,
which are common benchmarks in the literature. HOTEL
includes d = 4 attributes for 418,843 hotels [2]; HOUSE
d = 6 types of expenditure for 315,265 households [3]; and
NBA d = 8 statistics for 21,960 NBA players [4]. Table 3
summarizes the tested ranges and default values (in bold) of
the problem parameters. In each experiment we vary one pa-
rameter and keep the remaining ones to their defaults. The
performance of all methods varies insignificantly with the
competitiveness measure used, as it is heavily dominated
by the derivation of RKS(c) for each cell in the heat-map;
we use MaxMink by default. All algorithms were imple-
mented in C++, and complied by GCC with Level 2 opti-
mization. We used a computer with Intel Xeon Gold 5122,
3.6GHz CPU and 32GB RAM, running on CentOS.

In Figure 10, we present the running time and the num-
ber of r-dominance tests for different product set cardinali-
ties. The response time of all methods increases sub-linearly
to |P|, which is reasonable since the k-skyband and, sim-
ilarly, the rk-skyband generally grow in size in the same
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Fig. 10 Effect of |P|

(sub-linear) manner [31]. First, comparing MDA/MDA+

to CSA/CSA+, there is a running time improvement of 2
orders of magnitude. This behavior is as expected, due to
CSA/CSA+ making one insertion into the simplex pyramid
for each pair of products in the k-skyband (as opposed to
only one insertion per k-skyband product in MDA/MDA+)
and the fact that they practically compute the rk-skyband
even for the internal nodes of the pyramid. That is also re-
flected in the number of r-dominance tests in Figure 10(b),
where MDA/MDA+ perform 5.3M tests in the default set-
ting, versus 25M and 35M tests for CSA+ and CSA, re-
spectively. Second, between MDA and MDA+, the latter is
the clear winner, being 2 times faster. By design, MDA and
MDA+ perform an identical number of r-dominance tests.
Hence, the performance difference between them is purely
due to theRKS(N ) computation in the internal nodes of the
pyramid. This testifies to the effectiveness of (i) MDA+’s in-
dividualization of the RKS(N ) computation per node, and
(ii) its avoidance of unnecessary product propagations in
the sub-trees of considered nodes. MDA+ exhibits strong
scalability, requiring 0.5s even for the largest product set
tried (|P| = 10M ). Third, the comparison between CSA
and CSA+ has no clear winner. As shown in Figure 10(b),
CSA+ indeed performs fewer r-dominance tests than CSA.
However, the saved computations are often overturned by
CSA+’s overhead to maintain the delta-graphs in the pyra-
mid. Fourth, BL is the slowest method, being 3 orders of
magnitude slower than MDA/MDA+and 1 order slower than
CSA/CSA+. This, and its excessive number of r-dominance
tests (in Figure 10(b)) confirm the BL deficiencies we elab-
orated at the end of Section 4.1; in the default setting (i.e.,
|P| = 500K) it performs 4.7 billion tests!

In Figure 11, we vary the dimensionality d and measure
the running time and memory consumption. From Lemma 2,
we see that the number of cells in the heat-map increases
near-exponentially with d. This explains the increase in time
and space requirements for all algorithms. Note that for
d > 5, BL fails to terminate within a day; also, CSA and
CSA+ run out of memory. This highlights that the advan-
tages of MDA+ do not stop at processing time, but they
extend to space overhead too; it is indicative that even for
d = 7, MDA+ requires only about 1MB of space. Recall
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that CSA and CSA+ maintain a rk-skyband for each node in
the pyramid, in the form of a dominance count array and a
(even more voluminous) delta-graph, respectively. MDA re-
lies on a lighter structure, i.e., RKS(N ), yet it still needs to
keep aRKS(N ) set for each and every node in the pyramid.
MDA+, on the other hand, does not require many intermedi-
ate results, since it completes theRKS(N ) computation be-
fore propagating it toN ’s children. Actually, as explained at
the end of Section 4.3.2, MDA+ needs to maintain theRKS
set for a maximum of h = log2(λ) nodes at any point dur-
ing execution. Furthermore, while CSA, CSA+ and MDA
require an explicit representation of the entire simplex pyra-
mid, MDA+ requires the geometric representation of only
h nodes.7 Regarding BL, the space requirements are mini-
mal (below 20KB) and only slightly affected by d, since its
RKS(c) computations are independent from each other; its
requirements come predominantly from the search heap of
its rk-skyband computation building block [50].

Figure 12 studies the effect of k. Regarding BL, a larger
k implies a larger rk-skyband for every cell in the heat-map.
Similarly, it leads to larger rk-skybands and RKS(N ) sets
(for CSA/CSA+ and MDA/MDA+, respectively) through-
out the nodes of the simplex pyramid. This results in more
r-dominance tests and, thus, in increased running time. That
said, not all methods are affected to the same extent, with
MDA and MDA+ scaling significantly better.

In Figure 13, we vary the heat-map granularity. For λ
equal to 8, 32, and 128 we have a total of 260, 16,400, and
1,048,640 cells, respectively. Hence, the time and space re-

7 Note that the space measurements do not include the size of the
heat-map itself, since the per-cell competitiveness values are directly
output upon RKS(c) computation.
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quirements increase for all methods. However, the increase
is sub-linear to the number of cells. That is because as the
number of cells grows, their volume decreases. In turn, this
means that the rk-skyband for each cell includes fewer prod-
ucts and, similarly, that we need to consider fewer prod-
ucts for its computation. Focusing on running time (Fig-
ure 13(a)), the difference of MDA+ from MDA grows with
λ, because a higher simplex pyramid implies greater gains
from the avoidance of unnecessary propagations. Another
observation is that the running time of CSA+ increases
more sharply than the other methods, because the number of
nodes in the pyramid, and thus the number of delta-graphs it
needs to maintain, shoots up.

In Figure 14(a), we use the synthetic product sets. The
fastest (slowest) distribution to process is CORR (ANTI, re-
spectively). That is because in CORR the rk-skyband gen-
erally holds the fewest products, while in ANTI the most.
Our best method, MDA+ remains practical in all settings,
requiring just 9.3s even for ANTI.

In Figure 14(b), we use real datasets. The results are in
line with previous figures, and especially with Figure 11,
as they demonstrate the strong effect of d; NBA, although
smaller than HOTEL and HOUSE, is the slowest to process
due to its higher dimensionality. Note that BL fails to ter-
minate within a day for HOUSE and NBA. On the other
hand, CSA, CSA+, and MDA run out of memory for NBA,
making MDA+ the only feasible method for it (with space
requirements of only 44KB).
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8 Conclusion

Identifying the products of most interest to a user has been
well-explored in the database literature, giving rise to stan-
dard operators such as the skyline and the top-k query.
In this paper, we take a different viewpoint of this gen-
eral querying model, and aim instead to chart the compet-
itiveness of a multi-attribute dataset at different parts of
the users’ preference spectrum. We identify two orthogo-
nal types of market competitiveness, and define measures
for them. We design a suite of algorithms for the efficient
computation of these measures across the user spectrum, and
represent them in the form of a heat-map. We perform case
studies with real data that reveal actionable market insights,
and we demonstrate experimentally the efficiency and scala-
bility of our algorithms. Byproducts of our work include the
identification of products that stand out in the competitive
landscape, and a new approach for top-k query acceleration.

Both classes of our competitiveness measures are de-
fined on the restricted k-skyband (i.e., the set of prod-
ucts that matter preference-wise) for different parts of the
user spectrum. Therefore, we have focused our technical at-
tempts to explicitly compute that set for every cell of the
heat-map. A challenging direction for future work would be
to evaluate (or approximate) the competitiveness measures
without explicitly computing the restricted k-skyband, in or-
der to further reduce the computation time. In the case of ap-
proximation, the challenge entails also the formal bounding
of the inaccuracy incurred.
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and T. Emrich. Voronoi-based nearest neighbor search for multi-
dimensional uncertain databases. In ICDE, pages 158–169, 2013.

94. Z. Zhang, C. Jin, and Q. Kang. Reverse k-ranks query. PVLDB,
7(10):785–796, 2014.


