
CLC Number
UDC Classification Level

SOUTHERN UNIVERSITY OF SCIENCE AND

TECHNOLOGY

Undergraduate Thesis

Cover Ratio Maximization

Author : Keming Li
Student ID : 11612126
Department : Computer Science and Engineering
Major : Computer Science and Technology
Supervisor : Prof. Bo Tang
Finished Time : May, 2020

SUSTech’s Dissertation for Bachelor’s Degree

诚信承诺书

1. 本人郑重承诺所呈交的毕业设计（论文），是在导师的指导下，独立进行研究
工作所取得的成果，所有数据、图片资料均真实可靠。

2. 除文中已经注明引用的内容外，本论文不包含任何其他人或集体已经发表或
撰写过的作品或成果。对本论文的研究作出重要贡献的个人和集体，均已在文

中以明确的方式标明。

3. 本人承诺在毕业论文（设计）选题和研究内容过程中没有抄袭他人研究成果和
伪造相关数据等行为。

4. 在毕业论文（设计）中对侵犯任何方面知识产权的行为，由本人承担相应的法
律责任。

作者签名: 李可明

2020 年 5月 14日

I

SUSTech’s Dissertation for Bachelor’s Degree

Contents

Contents· III

ABSTRACT· V

摘 要 ·VII

Chapter 1 INTRODUCTION · 1

Chapter 2 RELATED WORK · 3

Chapter 3 PROBLEM DEFINITION · 5

Chapter 4 GEOMETRIC COMPUTATION NATURE · · · · · · · · · · · · · · · · · 7
4.1 To Cover Users · 7
4.2 Cell Tree Representation · 7
4.3 Baseline Solution · 8
4.4 Time Comlexity · 8

Chapter 5 ADVANCE SOLUTION · 9
5.1 Lemmas That Help to Prune· 9
5.2 Get Pruning Number · 10
5.3 Insertion Order of Users · 10
5.4 Summary of Lemmas · 11
5.5 Advance Solution · 12
5.6 Time Complexity · 13

Chapter 6 EXPERIMENT RESULTS· 15
6.1 Experiment Setting · 15
6.2 Effectiveness of Lemmas and Tricks · 15
6.3 Influence of Inputs · 19
6.4 Effect of Product Dataset Distribution and B· 21

References · 29

Acknowledgements · 31

III

SUSTech’s Dissertation for Bachelor’s Degree

ABSTRACT

Decision making problem is popular among these days. In rank aware processing, a
user will only choose the option that ranks topkF for himself. Concretely, preferences of
users are usually represented as weight vectors. Each attribute of weight vector means how
important is that attribute to that user. The score of an option respecting to a user is the dot
product between the user’s preference weight vector and the option. Only the options with
topk scores can attract the user. An option covers a user if and only if it can rank topk for
that user. Usually, a company has many products (options), each of which covers some of
the users. A user covered by a company means at least one of its products covers this user.
The company has to develop new product that satisfies a constraint andmake its all products
including this new product cover as more users as possible. In this paper, we study how to
determinate which newly added option can maximize the cover ratio of the company. This
problem is essential in developing new product, advertising, etc. We refer this problem as
kCover Ratio Maximization. In this paper, we begin from topk problem’s computational
geometric nature using Cell Tree to represented option spaces, and then from the relation
ship among constraint, options and user preference weight vectors to more efficiently solve
this problem returning the exact optimal solution. We set a lot of experiments to show the
efficiency of our optimizations and at the same time we found interesting relationship be
tween the constraint and running time. Combining with the experience of decision making,
we found that it is hard to tell what kinds of product could cover the most users when the
constraint intersects with most the users topk condition.

Keywords: User Cover ratio, Introduce new option, Topk query，Weight vector

V

SUSTech’s Dissertation for Bachelor’s Degree

摘 要

近年来关于如何做决策的问题十分热门。在排名处理系统中，会假设一个用户

只会从排入他（她）前 k的产品中作出选择。具体地，用户对于产品各种属性的爱
好会用权重向量来表示。权重向量每个维度的大小表现了该维度对于该用户的重要

性。一个产品的对于一个用户的分数就是产品的各个指标得分组成的向量与该用户

的权重向量的点乘。只有排进该用户前 k的产品才有可能影响用户最后的选择。当
且仅当一个用户的产品排该用户前 k时我们称该产品覆盖这个用户。对于一个公司，
它可能有很多产品，每个产品都有各自的覆盖用户群。当公司的至少一款产品能覆

盖某个用户时，我们称改公司用户覆盖该用户。随着市场以及自身业务的发展，公司

要研发一款新的满足一定约束条件的产品，使得公司的所有产品包括新产品总的尽

可能覆盖最多的用户。在本篇论文中我们会讨论如何精确找到这个能使公司覆盖率

最大的新产品。本篇论文讨论的问题在例如研发一款怎么样的新产品让公司总收益

最大，如何加强广告宣传使总覆盖用户最多等非常多领域都有很大的应用价值，同

时我们把这个问题命名为 kCover Ratio Maximization。在本篇论文中，我们从前 k
问题的计算几何性质入手用 Cell Tree这种数据结构表达候选的产品空间，然后从约
束条件、产品、用户、前 k条件等内在联系做优化大大提高解决问题效率,最后返回
最优解的解集。我们做了许多实验证明我们的优化的有效性，同时发现了运行效率

与约束条件的关系，与现实决策结合得出在付出成本与成为大多数人前 k的条件相
交时是比较难决定什么样的产品会覆盖更多的用户的。

关键词： 用户覆盖率,新产品决策,前 k查询,权重向量

VII

SUSTech’s Dissertation for Bachelor’s Degree

Chapter 1 INTRODUCTION

Take smartphone market as an example, there are different models of smartphones
(D ={r1, r2, ..., rm}). Each model (ri = (ri[1], ri[2], ..., ri[d])) has different prices, pix
els, battery capacities, cooling capacities and etc. Now a company P owns x models
(P ={p1, p2, ..., px}∈ D) and a user data setW ={w1, w2, ..., wn}. Different users prefer in
different aspects, for example some of them may prefer smartphones that with large battery
capacity but some prefer thosewith better quality of screen, so eachwi = (wi[1], wi[2], ..., wi[d])

represents the preference weight vector corresponding to a single user. The score of a model
ri respecting to a user wi is the dot product ri · wi. Usually a user will only make a choice
from his own view of topk, so a product ranks topk for the users is quite important. A
product covers a user only when its score ranks topk among all existing productsD. With
the development of company and market, company has to develop a new product to cover
more users and make more profit. But with the limitation of technology, money and other
factors, one can’t develop a perfect product to cover all users. It can only develop a product
that covers as more user as possible under a constraint. For a company, some of its prod
ucts have covered some users, so what it wants to do is how to make this new product cover
more users that uncovered before.

In real life, kCover Ratio Maximization (kCRM) can solve the problems that how
to decide the next generation product for companies. In advertising industry, it can help
merchants how to cover specific group such as students, pregnant women and children.
Besides it can tell advertiser where to set up new advertising board and if do so it can cover
which group of people. Data analysts can use it to discover which group of people is ignored
by the market. It can tell vedio makers to make which kinds of vedios to attract users in
YouTube, TikTop or other vedio platform.

Generally speaking, it is not a product covers a user but a group of products covers a
user. And for different users, there are different groups of products. Among these groups
of products, there are uncertain number of identity products. In our problem, we are aim to
find this new product in continuous product space, which means there are infinite candidate
products, so it is difficult to tell which product covers the most users.

In this paper, we will use computational geometric nature of kCRM to explain how
to find the exact optimal options (products) with the data structure CellTree mentioned in
kSPR[1]. Besides, from some observations of this problem, we propose advance method
that ignore irrelevant users and candidate products to save time. At last we sample products
that satisfy the constraint and use their maximal cover count to prune the CellTree.

1

SUSTech’s Dissertation for Bachelor’s Degree

Chapter 2 RELATEDWORK

Based on the summary of kSPR[1], preferencebased querying which based on the
value of each attribute of products are mainly two kinds, skyline [2–5] and topk query
[6–10]. Skyline is also named as nondominated set [11], which including all the data that
each of them isn’t dominated by any other data in the dataset. ”X dominates Y” means X is
better them or equivalent to Y in all dimensions and there is at least one dimension that X
is better than Y. In our paper, we are more closed to topk query. Topk query will return k
products such that their scores are ranking topk respecting to the input user. Our problem
is to find the region that where the new product lies will it rank topk for most of the rest
given users. Another related problem is reverse topk [12–14], which is to return the users
that input product can rank topk respecting to them. Based on the output of topk query,
whynot topk query [15] is proposed to change the user weight vector by advertisements,
correcting wrong user information or other ways with the minimum penalty to make an
input product ranks topk. At the same time, based on the output of reverse topk query,
whynot reverse topk query [16] is proposed to how to change the k in topk, the user
weight vector w or the product p’s attribute values so as to make w shown in the reverse
topk result of p.

One of the related studies for our problem is k − hit query[17], which attempts to
find k products from given product dataset so as to rank top1 of users as more as possible.
The candidate solution of k−hitquery is discrete and finite while kCRM is to find a new
product ranks topk for as more users as possible. At the same time, CRM may return
unknown number optimal products or even infinite products from continuous candidate
space if only they are all optimal at the same time.

A recent study TopRR[18] is very closed to our problem, which is attempting to return
the product region that each of whose products can rank topk for all input users. The major
different between TopRR and kCRM is that the candidate space is not complete in the
domain of product for kCRM since kCRM can only choose the product that satisfies the
constraint, which means in most cases, the optimal products can’t cover all users and it is
unknown that the optimal products will cover how many or which users.

In our paper, we use theCTA approach as mentioned in kSPR as our baseline. kSPR

is to return the user region that an input product can rank topk and it uses a data structure
CellTree to exactly identify in which user space the product’s score is better than product
dataset’s another product’s score, so CellTree can take the regions that the input product
not worse than other k products as results and return them. For kCRM , we transform our
problem into return the product region that covers input users as more as possible. We find
that to cover one or multiple users product also lies in regions and CellTree can store and

3

SUSTech’s Dissertation for Bachelor’s Degree

process them either. CellTree will record each region cover how many users and return
the region covers the most users as kCRM ’s answer.

4

SUSTech’s Dissertation for Bachelor’s Degree

Chapter 3 PROBLEM DEFINITION

In this section, we will firstly introduce related concept and then propose our problem.
Definition 1. A product p’s score respecting to a user w is the dot product p · w.
Without loss of generality, w satisfies w[i] ∈ [0, 1], p satisfies p[i] ∈ [0, 1] and

Σd
i=1w[i] = 1. We also take the values as larger as better for products and so the larger

the score the better.
Definition 2. A product p covers a user w when the score respecting to w ranks topk

among D.
Problem 1. The k − CoverRatioMaximization takes product dataset D, P ⊂ D,

user data set W and a positive integer k as inputs. It introduces how to determine a new
product p such that satisfies the constraint C(p) ≤ B and maximizes the cover ratio of
P ∩ {p}:

cp(p, P, k) =
| {w|∀w ∈ W, {P ∪ {p}} ∩ TopK(w) ̸= ∅} |

|W |
For the sake of convenient, we define constraint C(p) ≤ B as Σd

i=1p[i] ≤ B.

5

SUSTech’s Dissertation for Bachelor’s Degree

Chapter 4 GEOMETRIC COMPUTATION NATURE

4.1 To Cover Users

Definition 3. The kth score Sik represents the scores to ranks topk corresponding to
user wi.

For simplicity, we mark

1. wi · p = Sik as hi

2. wi · p > Sik as h+
i

3. wi · p < Sik as h−
i

(a) Hyperplane insertion (b) CellTree insertion

Figure 4.1: hyperplane insertion and CellTree insertion

As shown in Figure 4.1a, when it comes to multiple users, such as 2 users {w1, w2},
firstly h1 divides product space into 2 halfspace h+

1 and h−
1 ; then h2 divides h+

1 into h+
1 ∩h+

2

and h+
1 ∩ h−

2 and divides h−
1 into h−

1 ∩ h+
2 and h−

1 ∩ h−
2 . Region h+

1 ∩ h+
2 covers both w1

and w2; region h+
1 ∩ h−

2 could only cover w1; region h−
1 ∩ h+

2 could only cover w2; region
h+
1 ∩ h−

2 can’t cover any user.

4.2 Cell Tree Representation

The tree in Figure 4.1b is called CellTree, which is firstly proposed by kSPR. We
use the root node to represent the whole candidate space. After the insertion of h1, the root
node (cell) c0 generates 2 child cells c1 and c2 while the space is divided into 2 parts; c1
and c2 represent h−

1 and h−
1 respectively. After the insertion of h2, the cell c1 generates 2

7

SUSTech’s Dissertation for Bachelor’s Degree

child cells c3 and c4; the cell c2 generates 2 child cells c5 and c6. From root cell c0 to cell
c3, we can clearly see that c3 is h+

1 ∩ h+
2 , which means c3 covers w1 and w2. Similarly, c4

is h+
1 ∩ h−

2 , which means c3 covers w1. Among all the cells, c3 covers the largest number
of users. If we change the root cell as C(p) ≤ B and remove all those users that already
covered by P then we can use CellTree to solve kCRM .

4.3 Baseline Solution

In the below paragraph, we will introduce our baseline approach to get the optimal
solution for kCRM , which follows these steps:

1. Calculate the topk score Sik for each wi ∈ W .

2. Find all the wi ∈ W that P covers and mark their set asW ∗.

3. UpdateW = W −W ∗.

4. UsingCellTree to find the cell that with maximal cover count and return the optimal
cells.

4.4 Time Comlexity

As proposed in kSPR, theCellTree approach’s time complexity isO(nd), which n is
the product dataset cardinality and d is the dimensionalty of data. For our problem, baseline
solution time complexity isO(nd+nm logm) orO(nd+nmk). nmeans the cardinality of
users that take part in CellTree halfspace insertion. dmeans the dimentionality of data. m
means the cardinality of product dataset. O(nm logm) is corresponding to the process of
findingSik for each user, which needs calculating the dot product of users, sorting the scores
and return the kth score. We could also use seletion sorting instead of sorting methods with
time complexityO(m logm)when product dataset is huge while k is small to make getting
Sik of all users with time complexity O(nmk). In most cases nd ≫ nm logm, so we can
take baseline’s time complexity as O(nd).

8

SUSTech’s Dissertation for Bachelor’s Degree

Chapter 5 ADVANCE SOLUTION

5.1 Lemmas That Help to Prune

Baseline solution basically is just a brute force method. Now we introduce some lem
mas that prunes and accelerates the baseline solution.

Definition 4. A product p dominates another product q if and only if ∀i ∈ [1, d], the
ith dimension p[i] ≥ q[i] and ∃ i ∈ [1, d], the ith dimension p[i] > q[i].

Lemma 1. If ∀q that C(q) < B, ∃p that C(p) = B and p dominates q, then there must
be at least one optimal solution on C(p) = B.

Because for most of the constraint C(p) < B is bounded by C(p) = B and as for our
defined constraint Σd

i=1p[i] ≤ B satisfies condition of Lemma 1, in experiments we only
need to consider region C(p) = B as our candidate space which is also the root node of
CellTree.

On the base of Lemma 1 that only consider C(p) = B, which also means only hi will
divide space C(p) = B would affect where the optimal solutions are, we define Lemma 2.

Lemma 2. Ignore the users w such that w · p = Sk doesn’t intersect with constraint
C(p) = B won’t affect the kCRM result.

Figure 5.1: User Intersect With constraint

As shown in Figure 5.1, if we decide to choose the new product from C(p) = B,
we can see that h1 also divides the product space into 2 halfspaces, but all the products on
C(p) = B are in the“”halfspace, which means all of them can not cover w1. Different
from w1, the products that on C(p) = B all can cover w2. From this observation, we can
move out all the users w such that wi · p = Sik doesn’t intersect with C(p) = B.

9

SUSTech’s Dissertation for Bachelor’s Degree

Definition 5. The negative space count for a CellTree node is the negative spaces
from this node to root node traversing by ancestor node one by one.

Take Figure 4.1b as an example, the negative space count

1. For cell c4 is 1 because of h−
2 ,

2. For cell c5 is 1 because of h−
1 ,

3. For cell c6 is 2 because of h−
1 and h−

2 .

Lemma3. If the cover count of optimal solution in kCRM is at least β and card(W) =

n, then all the nodes with more than n− β can’t become the optimal solution and they can
be pruned.

Lemma 3means that if we can judge there is no solution in a space can become optimal
solution because them can’t cover at least β users, then we can prune this space. Take Figure
4.1b as example, if β = 2whichmeans the optimal solution should at least cover 2 users and
W = {w1, w2, w3}, then the nodes c3, c4, c5 can be pruned because they can never cover
at least 2 users even after the insertion of h3. Actually, β is the lower bound of optimal
solution.

Definition 6. Pruning number α is defined as α = n− β which based on Lemma 3.
Pruning number α means that if a node’s negative space count exceeds α, than it is

safe to prune this node.

5.2 Get Pruning Number

Based on Lemma 3, to find a proper β, we simply uniformly generate new products in
candidate space and then find the maximal cover count of them. The procedure is:

1. Uniformly generate new products P ′ ={p′1, ..., p′y} on C(p′) = B.

2. Calculate cover count of each of P ′.

3. Find the maximal cover count of P ′ as β

4. Pruning number α = card(W)− β

5.3 Insertion Order of Users

Definition 7. Maximal likely cover count of a user means the maximal cover count of
the sampled products that cover this user.

As mentioned in Lemma 3, we prune the cell nodes that with more that α negative
halfspaces. To be earlier prune the nodes that itself and its subtree leaf nodes can’t be

10

SUSTech’s Dissertation for Bachelor’s Degree

optimal solution, we can firstly insert the halfspace that its positive halfspace not likely
be the component of optimal solutions. Our method to determinate the insertion order of
halfspace is by the maximal likely cover count of users (we write CoverCount in short as
CC):

1. Initialize the cover count of each user as 0.

2. Uniformly generate new products P ′ ={p′1, ..., p′y} on C(p′) = B.

3. for p′ in P ′

(a) W ′ is the user set covered by p

(b) p′.CC = card(W ′)

(c) for w′ inW ′

i. w′.CC = max(w′.CC, p.CC)

4. updateW = AscendingSortByCC(W)

5. returnW

Lemma 4. Insert users by the order of their maximal likely cover counts in ascending.

The assumption that proposes Lemma 4 is that we don’t want those users positive
halfspaces hi

i hide with the user positive halfspaces can be part of optimal because that
would make us use α to prune nodes quit late for it has generate many nodes can’t be part
of optimal solutions.

5.4 Summary of Lemmas

1. Lemma 1 prunes the candidate space from C(p) ≤ B to C(p) = B.

2. Lemma 2 moves out the users w that w · p = Sk doesn’t intersect with C(p) = B

3. Lemma 3 state that in the process ofCellTreewe can prune the nodeswhose negative
space count is more than pruning number α.

4. Lemma 4 introduces a heuristic trick that forces pruning some nodes using Lemma
3.

11

SUSTech’s Dissertation for Bachelor’s Degree

5.5 Advance Solution

The main procedure for advance solution in short is:

1. Remove users covered by P .

2. Remove users by Lemma 2.

3. Apply Lemma 4 change the insertion order of users’ halfspace.

4. Apply Lemma 1 on root node of CellTree.

5. Apply Lemma 3 prune nodes when doing CellTree insertion.

For more details:

1. Calculate the topk score Sik for each wi ∈ W .

2. Find all the wi ∈ W that P covers, mark their set asW ∗.

3. UpdateW = W −W ∗.

4. Find all the wi ∈ W that wi · p = Sik doesn’t intersect with C(p) = B, mark their
set asW ∗∗.

5. UpdateW = W −W ∗∗.

6. Generate new products on candidate space and find their maximal cover count as β

7. Let pruning number α = card(W)− β

8. Update candidate space from C(p) ≤ B to the part of C(p) = B.

9. Chnage order of usersW as defined in Lemma 4

10. For wi ∈ W , try to insert hi for existing CellTree using depth first search.

(a) If the current node is marked as pruned, return.

(b) Else if the node is in h−
i , increase its negative space count by 1.

i. If the node’s negative space count exceeds α mark it as pruned.

ii. Increase its subtree nodes’ negative space count by 1.

(c) Else if the node is in h+
i , increase its child nodes’ and its cover count by 1.

(d) Else if there is no child nodes of current node, generate two child nodes as h−
i

and h+
i , return.

12

SUSTech’s Dissertation for Bachelor’s Degree

(e) Else if two child nodes marked as pruned, the current node is also marked as
pruned

(f) Else traverse to its child nodes.

11. Return the node with maximal cover count.

5.6 Time Complexity

As memtioned in Section 4.4, the baseline’s time complexity is O(nd). For advance
solution, we reduce the candidate space from C(p) ≤ B to C(p) = B, which actually re
duces our time complexity toO(nd−1) because the candidate space reduces by 1 dimension
and the insertion halfspace reduces by 1 dimension together. Besides, we remove the users
that doesn’t intersect with C(p) = B. Actually, some of these users may related to the
optimal solution, for example their halfspace may enclose the optimal solution region but
since we give up all the candidate space of C(p) < B they then just look unrelated to the
optimal solution. In fact, if we want an optimal solution with the lower cost we need those
users that h−

i are totally cover by C(p) ≤ B. Back to the thesis of this section, the n in
O(nd−1) reduces users quit a lot. We use nnew to represented the cardinality of user data
after removing the user by Lemma 3, then our time complexity is O(nd−1

new).

13

SUSTech’s Dissertation for Bachelor’s Degree

Chapter 6 EXPERIMENT RESULTS

6.1 Experiment Setting

Table 6.1: Product data set

Dataset d n Attributes Source

HOTEL 4 186,637 hotelsbase.com

No. of stars,
No. of rooms,
No. of facilities,
Price

HOUSE 6 315,063 ipums.org
Gas, Electricity,
Water, Heating,
Insurance, Property tax

Table 6.2: Experiment parameters and default setting

Lemma 3 product samples 10k, 100K, 1M, 10M
card(P) 0, 5000, 10000, 15000, 20000

Product dataset HOTEL, HOUSE
User data size 1000, 5000, 10000

User data distribution Uniform, Correlated, Anticorrelated
k 5, 10, 20, 30

B for HOTEL 1, 1.25, 1.5, 2 , 2.5, 3
B for HOUSE 3, 3.5, 4 ,4.5, 5, 5.5 , 5.7 , 5.9

There are 3 kinds of datasets, the product data set D,m = card(D); the product data
set P , which uniformly generated byD and so P ⊂ D; the user data setW , all the attributes
of data w ∈ W satisfy Σw[i] = 1. The dimensionality of data is marked as d. Table 6.1
shows all the product datasets. Table 6.2 shows the parameters’ setting and our default
setting of them. Figure 6.1 shows how different distribution data looks like. For example,
if we want to sample products according to correlated distribution with 2 attributes, then
the final generated data will looks like Figure 6.1b.

All codes are implemented by C++; the procedure of insertion of hi needs LP solver
and we use lp_solve(http : //lpsolve.sourceforge.net/5.5/) to do it and the effciency of
lp_solve has been proved by kSPR. The running machine is with Intel Xeon Gold 5122
3.60 GHz CPU, 128GB DDR4 RAM.

6.2 Effectiveness of Lemmas and Tricks

In this section, we mainly discuss that how much does each lemma effetively help us
solve kCRM . And because there are some parameters within our advance algorithm, we

15

SUSTech’s Dissertation for Bachelor’s Degree

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Uniform Distribution Data

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Correlated Distribution Data

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) Anticorrelated Distribution Data

Figure 6.1: Different Distribution Data in 2d

would also explore how and why they could influence the efficiency of our algorithm the
way shown in our experiments.

default -L1 -L2 -L3 -L4
Approaches

106

107

No
. o

f c
el
ls

(a) No. of cells

default -L1 -L2 -L3 -L4
Approaches

103

104

Ti
m
e
in
 C
el
lT
re
e

(b) Time spent in CellTree

Figure 6.2: Effectiveness of Lemmas

16

SUSTech’s Dissertation for Bachelor’s Degree

Firstly, we would show a global view of each lemmas as in Figure 6.2. L1 means for
advance solution, we apply C(p) ≤ B instead of C(p) = B and the other optimization
will be remained. For L2, it will take account with those users wi such that wi · p = Sik

doesn’t intersect with C(p) = B. For L3, it won’t generate any lower bound of optimal
solution or anything related to pruning number α and it will just do insertion in CellTree

no matter how many negative spaces the nodes in. For L4, it will randomly insert users
into CellTree. The default running means, we will

• only consider C(p) = B

• remove unrelated users respecting to C(p) = B

• sample new product on C(p) = B, get lower bound of optimal solution and then use
α to prune nodes in CellTree.

• based on the less likely to be one of the covered users of optimal solution to insert
users so as to earlier prune them.

As shown in Figure 6.2a, because Lemma 1 tells that we only take account C(p) = B,
which means we reduce most of the candidate space and reduce problem from d dimension
to d− 1 dimension, it will improve our approach by hundreds of times of cells and running
time. For the other lemmas, it also improves our algorithm by dozens of times.

1K 2K 3K 4K 5K
Cardinality of W

104

105

106

107

108

No
. o

f c
el
ls

-L1
L1

(a) No. of cells

1K 2K 3K 4K 5K
Cardinality of W

101

102

103

104

Ti
m
e
in
 C
el
lT
re
e

-L1
L1

(b) Time spent in CellTree

Figure 6.3: Effectiveness of Lemma 1

For each of lemmas, we make some experiments for details of how efficient they are.
In Figure 6.3, −L1 means when the situation without applying Lemma 1 but keeping the
other lemmas work. With the change of cardinality of user dataset W , CellTree’s cell
number and running time grow fast for −L1 while grow more slower for L1. In Figure
6.4, we skip the previous step that remove the users that covered by P and clearly see that
the number users, whose wi · p = B would intersect constraint C(p) = B, grows linearly

17

SUSTech’s Dissertation for Bachelor’s Degree

1K 5K 10K 15K
Cardinality of W

2000

4000

6000

8000

10000

12000

No
. o

f I
nt
er
se

ct
 u
se

rs

(a) No. of cells

Figure 6.4: Effectiveness of Lemma 2

1K 5K 10K
Cardinality of W

104

105

106

107

No
. o

f c
el
ls

-L3
L3

(a) No. of cells

1K 5K 10K
Cardinality of W

101

102

103

104

Ti
m
e
in
 C
el
lT
re
e

-L3
L3

(b) Time spent in CellTree

Figure 6.5: Effectiveness of Lemma 3

1K 5K 10K
Cardinality of W

104

105

106

107

No
. o

f c
el
ls

-L4
L4

(a) No. of cells

1K 5K 10K
Cardinality of W

101

102

103

104

Ti
m
e
in
 C
el
lT
re
e

-L4
L4

(b) Time spent in CellTree

Figure 6.6: Effectiveness of Lemma 4

with cardinality of W . In Figure 6.5, we applying other lemmas but without Lemma 3,
which using lower bound of optimal solution to prune tree cells of CellTree, comparing
applying Lemma 3 shows that Lemma 3 help us save space and time efficiently. Figure
6.6 also shows the effectiveness of Lemma 4 which changes the insertion order of users to
CellTree in order to earlier prune the nodes that unlikely to be the ancestor cell of optimal

18

SUSTech’s Dissertation for Bachelor’s Degree

10K 100K 1M 10M
No. of samples

300

310

320

330

340

350

360

α

(a) pruning number α

10K 100K 1M 10M
No. of samples

175000

200000

225000

250000

275000

300000

325000

No
. o

f c
el
ls

(b) No. of cells

10K 100K 1M 10M
No. of samples

400

500

600

700

800

900

Ti
m
e
in
 C
el
lT
re
e

(c) Time spent in CellTree

Figure 6.7: Effect of No. of newly sampled products

solution nodes.
In Lemma 3 we say that we would sample new products on C(p) = B to get pruning

number and next we will show the cardinality of newly generated new products influences
our algorithm. The sampling time is negligible for time inCellTree insertion and we won’t
discuss the time spent by sampling in this section. As shown in Figure 6.7a, α slowly
decreases with the increment of samples. We can also see from Figure 6.7b and Figure 6.7c
though the change of α is small, but it makes a huge impact on resulting cells number in
CellTree. This can explained by our algorithm’s time complexity, O(nd), which means a
litter change of users improves response time huge.

6.3 Influence of Inputs

In this section, we would show the compact of input parameters to our algorithm.
Since the time complexity isO(nd), we can see from Figure 6.8 that the users remain to

be inserted in CellTree grow linearly while the resulting cells and response time growing
exponentially.

Product dataset P will influence the efficiency of solving problems because in some
extreme condition, or unluckily P only covers a few users; but sometime, P will covers

19

SUSTech’s Dissertation for Bachelor’s Degree

1K 5K 10K
Cardinality of W

200

400

600

800

1000
Ce

llT
re
e
in
se
rti
on

 u
se
rs

(a) Processed users in CellTree

1K 5K 10K
Cardinality of W

100

200

300

400

500

α

(b) Pruning number α

1K 5K 10K
Cardinality of W

0

500000

1000000

1500000

No
. o

f c
el
ls

(c) No. of cells

1K 5K 10K
Cardinality of W

0

500

1000

1500

2000

Ti
m
e
in
 C
el
lT
re
e

(d) Time spent in CellTree

Figure 6.8: Effect of cardinality of user datasetW

0 5K 10K 15K 20K
cardinality of P

0

1000

2000

3000

4000

5000

Us
er
s u

nc
ov

er
ed

 b
y
P

Figure 6.9: Effect of card(P) on user uncovered by P

most of users. To complete the experiment of explore the global view impact of cardinality
of P , we run 20 times sampling different P for each attribute as shown in Figure 6.9. The
original user data sizes are all 5000 and are the same. The y axis means how many users
is left that uncovered by P . We can see from Figure 6.9 such that with the increment of
cardinality of P , uncovered users number decreases slower and slower.

Now we explore the impact of k. Our problem is to find a new product that rank as
more as possible users’ top k as possible, and we have a prerequisite such that product

20

SUSTech’s Dissertation for Bachelor’s Degree

5 10 20 30
k

102

103
Us

er
s t

ha
t P

 u
nc

ov
er
ed

1000
5000
10000

(a) User uncovered by P

5 10 20 30
k

101

102

103

104

Ti
m
e
in
 C
el
lT
re
e

1000
5000
10000

(b) Time spent in CellTree

Figure 6.10: Effect of k (HOTEL)

dataset P already covers a part of the users. With the increasing k, unchanged product
dataset and user dataset, the products in dataset P are to cover more users easily because
the the threshold to be a user’s topk is lowering down. With P covering more users, no
matter which of the lemmas we propose or the baseline CellTree approach will all greatly
benefit from the reducing users. We show the experiment in Figure 6.10. The y axis of
Figure 6.10a means the users number that we need to handle after removing the users that
covered by P . We can see that user dataset with size 1000, 5000 or 10000, their uncovered
users decrease exponentiallywith the change of k. And because of the decreasing uncovered
users, our response time also decreases exponentially.

6.4 Effect of Product Dataset Distribution and B

To straight forward presents our algorithm and shows the interesting finding in exper
iments, we use a 2d experiment and visualize it as in Figure 6.11, 6.12 and 6.13.

First of all, the users are all generated uniformly from w[1] + w[2] = 1.
To explain Figure 6.11, 6.12 and 6.13, we take 6.11a as an example, this figure is drawn

in product space. Product dataset D consists with the grey, blue and red points ; product
dataset P consists with the blue and red points; the red points are the points that each of
them at least covers one user. Specially, we have to expand the size of red points to clearly
show them. We can see the red points of Figure 6.11a at about (0.9, 0.9) and (0.95, 0.8).
The lines are all wiṗ = Sik. The blue lines mean the corresponding wiṗ = Sik of users that
covered by P and the rest users’ halfspaces are orange lines. From Figure 6.11b to Figure
6.11f, the bold black line means the constraint Σd

i=1p[i] ≤ B when B equals 1.1, 1.3, 1.5,
1.7, 1.9 respectively. The orange lines mean the wiṗ = Sik that intersects with constraint
and the blues aren’t intersect with constraint.

In Figure 6.11a, because the distribution of products is uniform so for each user weight
vector wi, there is a proper product pwi nearby the extend of wi ranks topk for it. And

21

SUSTech’s Dissertation for Bachelor’s Degree

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0

p[
2]

Covered By P

(a) Products and users covered by P

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0

p[
2]

B = 1.1

(b) Uniform, B=1.1

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0

p[
2]

B = 1.3

(c) Uniform, B=1.3

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0
p[

2]
B = 1.5

(d) Uniform, B=1.5

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0

p[
2]

B = 1.7

(e) Uniform, B=1.7

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0

p[
2]

B = 1.9

(f) Uniform, B=1.9

Figure 6.11: Effect of B on uniform products

22

SUSTech’s Dissertation for Bachelor’s Degree

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0

p[
2]

Covered By P

(a) Products and users covered by P

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0

p[
2]

B = 1.1

(b) Corr, B=1.1

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0

p[
2]

B = 1.3

(c) Corr, B=1.3

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0

p[
2]

B = 1.5

(d) Corr, B=1.5

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0

p[
2]

B = 1.7

(e) Corr, B=1.7

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0

p[
2]

B = 1.9

(f) Corr, B=1.9

Figure 6.12: Effect of B on corr products

23

SUSTech’s Dissertation for Bachelor’s Degree

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0

p[
2]

Covered By P

(a) Products and users covered by P

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0

p[
2]

B = 1.1

(b) Anti, B=1.1

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0

p[
2]

B = 1.3

(c) Anti, B=1.3

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0
p[

2]
B = 1.5

(d) Anti, B=1.5

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0

p[
2]

B = 1.7

(e) Anti, B=1.7

0.0 0.2 0.4 0.6 0.8 1.0
p[1]

0.0

0.2

0.4

0.6

0.8

1.0

p[
2]

B = 1.9

(f) Anti, B=1.9

Figure 6.13: Effect of B on anti products

24

SUSTech’s Dissertation for Bachelor’s Degree

because the halfspace wi · p = Sik getting through the point pwi, so the lower bounds of
wiṗ = Sik makes a smooth curve along p[2] = 1 and p[1] = 1. From Figure 6.11b to
Figure 6.11f, the number of the halfspaces that intersect with constraint increases with the
increasing B because more and more products become some of the users’ topk and so as
will more halfspaces be there.

In Figure 6.12a, the red point is around (0.9, 0.9). In correlated distribution products
as shown in 6.12a, almost all the products that rank k for users are at the location that is
closed to (1, 1). Because the halfspaces will get through the points that rank exactly k and
products ranking k are almost the same or very closed to each other, it seems all halfspaces
intersect at one point. Be careful that they aren’t intersect at exact one point and it looks so
just because of the size of figure we can show. The halfspaces that intersect with constraint
will gradually increase and at a special B decrease suddenly as we can see from Figure
6.12b to Figure 6.12f.

In Figure 6.13a, the red points are about at (0.1, 0.95), (0.3, 0.8), (0.8, 0.3). The prod
ucts that exactly rank k for users concentrate on (0.2, 0.9) and (0.9, 0.2). This could be
explained by the Lemma 4 of k − hitquery, which says that for any weight vector w if
only a point pix inside the convex hull made by Pi = {pi1, pi2, ..., pi(x−1)}, then there must
be a point in Pi such that its dot product with w is higher than pix’s. For our case of anti
correlated distribution products, most of products are between the points nearby (0, 1) and
(1, 0)which means for any weight vector, its topk is nearby (0, 1) or (1, 0)when k is small
and card(D) is also large. Therefore, in Figure 6.13 we can see most of halfspaces get
ting through (0.2, 0.9) and (0.9, 0.2) which is closed to (0, 1) or (1, 0). With the increasing
of B, the number of halfspaces that intersect with constraint suddenly increases and then
gradually decreases.

In Figure 6.11, 6.12 and 6.13, we show the process of our algorithm to solve kCRM .
Firstly, remove the users that covered by P . Remove the halfspaceswi ·p = Sik that doesn’t
intersect with constraint. Change the insertion order of halfspaces by some heuristic. Use
CellTree proposed in kSPR to find the region that cover the most of the rest of users.
During the process inCellTree, prune the tree nodes with lower bound of optimal solution.

Figure 6.14 shows the exact changes of halfspaces.

For uniform generated products, intersect halfspaces increases gradually. If the new
proposed product wants to cover as more user as possible, its attributes should balance and
all with high values. And if the new product is already a topk option for some users, it is
hard for it to cover more because each aspect of it is already high and the cost of develop
such product is too high to afford or too hard to realize. But still, we could introduce
the product that only satisfies some kind of users. For example, to cover users that care
more about p[1], we can introduce the new product as p = (1, 0.5) under the constraint

25

SUSTech’s Dissertation for Bachelor’s Degree

1.0 1.2 1.4 1.6 1.8
B

0

20

40

60

80
In
te
rs
ec

t h
al
fs
pa

ce
s

uniform
anti
corr

Figure 6.14: No. of halfspaces intersect with constraint

p[1] + p[2] ≤ 1.5.
For correlated generated products, intersect halfspace increases gradually and then

suddenly decrease. For this kind of product distribution, it is also recommended to introduce
new products that with high value in some attribute. It is easy for correlated products to
introduce a new product that cover all of the users since there are already existing several
products cover all of users but for uniformly products it is not likely to find product that
cover all users.

For anticorrelated generated products, intersect halfspaces firstly increases for a short
time and then gradually decreases. In real world, most of the product datasets are based
on this distribution, such as HOTEL and HOUSE data proposed in this paper. For each
attribute, there is a certain value that if the product’s corresponding attribute exceeds it then
this product will cover a kind of users. To cover different kinds of users, the new product
has to balance each attribute. Because in real world the users that favor in each attribute are
unbalance. For example, there are more users prefer computers with powerful computation
ability than with large memory. Consider the case P = ∅, to cover more users the new
product just needs to with high value in the attribute that consideredmore important bymost
users. When P ̸= ∅, as we can see from Figure 6.13a, to covered all of the rest user(the
orange lines), we need to introduce products such as {(0.1, 0.95), (0.95, 0.1)}. To covered
them by a single product, we need a product for example no worse than (0.9, 0.7). But in
realistic, the option decision maker isn’t likely to introduce such single product under the
limitation of technology, money and other factors. The best strategy is to firstly introduce
product (0.95, 0.1) and then is (0.1, 0.95). It is hard to cover all the users and company
should take good evaluation of market so as to step by step make more profits.

26

SUSTech’s Dissertation for Bachelor’s Degree

CONCLUSION

Motivated by the need of introducing new product, we proposal our problem kCRM,
which is aim to find the exact optimal solution that covers the most rest users which product
dataset P can’t cover. We use data structureCellTree introduced in kSPR as our baseline.
Then we base on the relationship between constraint and user insertion halfspace to prune
unrelated users and get lower bound of optimal solution to prune the nodes in CellTree.
Besides, we change the insertion order of user halfspaces to more efficiently process in
sertion reducing the possible useless nodes. In our paper, we use experiments to show our
optimization for the baseline did improve it a great deal and we find some inner connection
between efficiency of our approach and constraint. For the future work, we can perform
further study the effect of insertion order of halfspaces to more efficiently solve kCRM

and so that we can deal with larger user datasets.

27

SUSTech’s Dissertation for Bachelor’s Degree

References

[1] TANG B, MOURATIDIS K, YIU M L. Determining the Impact Regions of Competing Options in
Preference Space[J/OL]. Proceedings of the 2017 ACM International Conference on Management
of Data SIGMOD 17, 2017.
http://dx.doi.org/10.1145/3035918.3064044.

[2] BORZSONY S, KOSSMANN D, STOCKER K. The Skyline operator[J/OL]. Proceedings 17th
International Conference on Data Engineering, .
http://dx.doi.org/10.1109/icde.2001.914855.

[3] PAPADIAS D, TAO Y, FU G, et al. Progressive skyline computation in database systems[J/OL].
ACM Transactions on Database Systems, 2005, 30(1) : 41–82.
http://dx.doi.org/10.1145/1061318.1061320.

[4] TAN KL, ENG PK, OOI B. Efficient Progressive Skyline Computation.[J], 2001 : 301 – 310.
[5] KOSSMANN D, RAMSAK F, ROST S. Shooting Stars in the Sky[J/OL]. VLDB 02: Proceedings

of the 28th International Conference on Very Large Databases, 2002 : 275–286.
http://dx.doi.org/10.1016/b9781558608696/500329.

[6] CHANG YC, BERGMAN L, CASTELLI V, et al. The onion technique[J/OL]. ACM SIGMOD
Record, 2000, 29(2) : 391–402.
http://dx.doi.org/10.1145/335191.335433.

[7] HRISTIDIS V, PAPAKONSTANTINOU Y. Algorithms and applications for answering ranked
queries using ranked views[J/OL]. The VLDB Journal The International Journal on Very Large
Data Bases, 2004, 13(1) : 49–70.
http://dx.doi.org/10.1007/s0077800300998.

[8] HRISTIDIS V, KOUDAS N, PAPAKONSTANTINOU Y. PREFER: A System for the Efficient
Execution of Multiparametric Ranked Queries.[J/OL]. SIGMOD Record (ACM Special Interest
Group on Management of Data), 2001, 30 : 259 – 270.
http://dx.doi.org/10.1145/375663.375690.

[9] XIN D, CHEN F, HAN J. Towards Robust Indexing for Ranked Queries.[J]. VLDB 2006 Pro
ceedings of the 32nd International Conference on Very Large Data Bases, 2006 : 235 – 246.

[10] ZOU L, CHEN L. Dominant Graph: An Efficient Indexing Structure to Answer TopK
Queries[J/OL]. 2008 IEEE 24th International Conference on Data Engineering, 2008.
http://dx.doi.org/10.1109/icde.2008.4497462.

[11] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGAII[J].
IEEE Transactions on Evolutionary Computation, 2002, 6(2) : 182 – 197.

[12] VLACHOU A, DOULKERIDIS C, NøRVåG K, et al. Branchandbound algorithm for reverse
topk queries[J/OL]. Proceedings of the 2013 international conference on Management of data
SIGMOD 13, 2013.
http://dx.doi.org/10.1145/2463676.2465278.

[13] VLACHOU A, DOULKERIDIS C, KOTIDIS Y, et al. Reverse topk queries[J/OL]. 2010 IEEE
26th International Conference on Data Engineering (ICDE 2010), 2010.
http://dx.doi.org/10.1109/icde.2010.5447890.

[14] VLACHOU A, DOULKERIDIS C, KOTIDIS Y, et al. Monochromatic and Bichromatic Reverse
Topk Queries[J/OL]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(8) : 1215–
1229.
http://dx.doi.org/10.1109/tkde.2011.50.

[15] He Z, Lo E. Answering WhyNot Questions on TopK Queries[J]. IEEE Transactions on Knowl
edge and Data Engineering, 2014, 26(6) : 1300 – 1315.

[16] GAO Y, LIU Q, CHEN G, et al. Answering whynot questions on reverse top k queries[J/OL].
Proceedings of the VLDB Endowment, 2015, 8(7) : 738–749.
http://dx.doi.org/10.14778/2752939.2752943.

[17] PENG P, WONG R CW. kHit Query[J/OL]. Proceedings of the 2015 ACM SIGMOD Interna
tional Conference on Management of Data SIGMOD 15, 2015.
http://dx.doi.org/10.1145/2723372.2723735.

[18] TANG B, MOURATIDIS K, YIUM L, et al. Creating top ranking options in the continuous option
and preference space[J/OL]. Proceedings of the VLDB Endowment, 2019, 12(10).
http://dx.doi.org/10.14778/3339490.3339500.

29

http://dx.doi.org/10.1145/3035918.3064044
http://dx.doi.org/10.1109/icde.2001.914855
http://dx.doi.org/10.1145/1061318.1061320
http://dx.doi.org/10.1016/b978-155860869-6/50032-9
http://dx.doi.org/10.1145/335191.335433
http://dx.doi.org/10.1007/s00778-003-0099-8
http://dx.doi.org/10.1145/375663.375690
http://dx.doi.org/10.1109/icde.2008.4497462
http://dx.doi.org/10.1145/2463676.2465278
http://dx.doi.org/10.1109/icde.2010.5447890
http://dx.doi.org/10.1109/tkde.2011.50
http://dx.doi.org/10.14778/2752939.2752943
http://dx.doi.org/10.1145/2723372.2723735
http://dx.doi.org/10.14778/3339490.3339500

SUSTech’s Dissertation for Bachelor’s Degree

[19] ILYAS I F, BESKALES G, SOLIMAN M A. A survey of top k query processing techniques in
relational database systems[J/OL]. ACM Computing Surveys, 2008, 40(4) : 1–58.
http://dx.doi.org/10.1145/1391729.1391730.

[20] FAGIN R, LOTEM A, NAOR M. Optimal aggregation algorithms for middleware[J/OL]. Journal
of Computer and System Sciences, 2003, 66(4) : 614–656.
http://dx.doi.org/10.1016/s00220000(03)000266.

[21] MOURATIDIS K, ZHANG J, PANG H. Maximum rank query[J/OL]. Proceedings of the VLDB
Endowment, 2015, 8(12) : 1554–1565.
http://dx.doi.org/10.14778/2824032.2824053.

[22] DAS G, GUNOPULOS D, KOUDAS N, et al. Answering Topk Queries Using Views.[J]. VLDB
2006 Proceedings of the 32nd International Conference on Very Large Data Bases, 2006 : 451 –
462.

30

http://dx.doi.org/10.1145/1391729.1391730
http://dx.doi.org/10.1016/s0022-0000(03)00026-6
http://dx.doi.org/10.14778/2824032.2824053

SUSTech’s Dissertation for Bachelor’s Degree

Acknowledgements

四年的光阴不长不短，在春节辅导员顺路接送回家，跟校学生会文娱部的大家

组织过很多活动有过许多快乐的时光，在风景美丽的校园上体育课，生物课老师对

我差劲英语的包容，物理课老师对我不耐烦的教导，细心认真的 Stéphane Faroult带
领我走入计算机专业，时常上课给同学人生建议的王琦老师，书院导师杨柳青给与

我们生活上的指导，书院班主任史玉回老师给我们分享的自己的人生经历，Hisao教
授带领我进入科研，唐博教授教懂我如何做项目，邵宣杰同学四年中对我数学上的

帮助，经常一起谈笑风生的黄旭以及张思宇同学，华为实习期间一直帮助我的工作

导师苏林达，组长林吉生以及同事王玮，有幸遇到各位优秀 DBGroup@SUSTech的
成员,感谢学校给与的丰厚资助，强大的师资与硬件，非常感谢让我一路上经历的这
一切美好与困难。最感谢的是我的父母，在我大学期间我体会到学校无微不至的关

怀，真诚的关心，认真的付出，这些我都将铭记在心。

李可明

2020年 5月 20日

31

	Cover Page
	Contents
	ABSTRACT
	摘要
	Chapter 1 INTRODUCTION
	Chapter 2 RELATED WORK
	Chapter 3 PROBLEM DEFINITION
	Chapter 4 GEOMETRIC COMPUTATION NATURE
	4.1 To Cover Users
	4.2 Cell Tree Representation
	4.3 Baseline Solution
	4.4 Time Comlexity

	Chapter 5 ADVANCE SOLUTION
	5.1 Lemmas That Help to Prune
	5.2 Get Pruning Number
	5.3 Insertion Order of Users
	5.4 Summary of Lemmas
	5.5 Advance Solution
	5.6 Time Complexity

	Chapter 6 EXPERIMENT RESULTS
	6.1 Experiment Setting
	6.2 Effectiveness of Lemmas and Tricks
	6.3 Influence of Inputs
	6.4 Effect of Product Dataset Distribution and B

	References
	Acknowledgements

