
Dynamic Graph Storage: An Experimental Survey

Xiangyu Zhi†, Xiao Yan†, Keming Li†, Bo Tang†, Yanchao Zhu‡, Minqi Zhou‡
†Department of Computer Science and Engineering, Southern University of Science and Technology

‡Gauss Department, Huawei Company
† {zhixy2021@mail., yanx@, likm2020@mail., tangb3@}sustech.edu.cn

‡ {zhuyanchao2, zhouminqi}@huawei.com

ABSTRACT
Dynamic graph, which refers to the case that the graph constantly
receives updates and needs to support real-time lookup and ana-
lytics, is common in many domains such as social networks and
e-commerce. The underlying storage structure has a fundamen-
tal impact on dynamic graph applications and is studied by many
works. However, existing works make different design considera-
tions, yielding a variety of storage structures with complex trade-
offs among different aspects, which makes it difficult to take lessons
to design for new applications. To tackle this problem, we con-
duct an extensive survey and evaluation of existing graph storage
systems, focusing on how the storage structures affect different
aspects of performance, e.g., update throughput, lookup efficiency,
algorithm execution time, and memory consumption. In particular,
we discuss the storage structures of 14 representative systems in
detail and characterize their design rationales and performance
implications. We also summarize the lessons learned by listing the
considerations/requirements one should clarify when designing a
graph storage system and discussing how existing techniques can
be composed to meet the requirements.

PVLDB Reference Format:
Xiangyu Zhi, Xiao Yan, Keming Li, Bo Tang, Yanchao Zhu, Minqi Zhou.
Dynamic Graph Storage: An Experimental Survey. PVLDB, 16(1):
XXX-XXX, 2023.
doi:XX.XX/XXX.XX

1 INTRODUCTION
Due to their excellent expressiveness, graphs are widely used as data
representations in many domains including social networks [31,
33, 65], e-commerce [18, 23], and web analytics [10, 39, 53]. For a
large number of applications, the graph keeps receiving updates
at high velocity [25, 37, 59, 62], e.g., when users add each other
as friends on social media or customers purchase products on an
e-commerce website. In the meantime, lookups and graph analytic
algorithms are expected to run efficiently on the latest version (or
a snapshot) of the graph [48, 73], e.g., to check the friends of a user
or to recommend products for the customers. These scenarios that
require high-speed updates and real-time analytics are commonly
referred to as the dynamic graph [19].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

The underlying storage structure plays a vital role in dynamic
graph applications and is studied by a plethora of works [3, 22, 27,
28, 32, 43–45, 51, 54, 57, 58, 66, 71, 75, 76]. These works differ in their
design considerations, including the data to store (e.g., only the
graph topology or also complex vertex/edge properties), the level of
data integrity (e.g., check update legality or not), and requirements
of the specific application (e.g., allow to trace historical versions of
the graph or not) [42, 64, 74]. As a result, they arrive at different
storage structures, e.g., linked lists, variants of trees, arrays in
different forms, and append-only logs. These structures in turn
lead to complex trade-offs in different aspects of performance, i.e.,
update throughput, lookup efficiency, algorithm execution time,
memory consumption, and thread scalability [56]. Thus, given a
dynamic graph application, it is unclear what lessons we can learn
from existing graph storage systems1 to design a graph storage that
suits the needs of the application.

To resolve the confusion, this paper conducts an extensive survey
and experimental study of existing graph storage systems. We focus
on structural graph, which includes the graph topology and some
fixed length properties (e.g., weight) for each vertex/edge, but also
cover some systems for property graph [12, 61], which may store
complex and variable length properties for each vertex/edge. For
14 representative systems, we introduce how different structures
are used to store the graph, and how key operations (e.g., edge
insertion/deletion, reading the edges of a vertex and enumerating
the entire graph) are performed on the structures. We also analyze
the performance implications of different structures and the design
rationales behind each system. To complement our analysis and
better understand existing systems, we conduct extensive experi-
ments to evaluate all aspects of their performance including update,
read, memory and scalability. To summarize, we made the following
contributions.
• We survey 21 graph storage systems and discuss 14 of them in

detail. We also propose a taxonomy for existing graph storage
systems, which classifies them into three categories according
to the basic structures they use, i.e., adjacency list variants, com-
pressed sparse row (CSR) variants, and hybrid structures.

• With extensive experiments, we provide comprehensive analyses
on how the basic storage structures (e.g., linked list, trees and
arrays) and key design choices (e.g., keeping sorted/unsorted
edges and storing additional properties) affect performance.

1Some existing works should be called graph storage structures or schemes as they
have not reached the complexity of a system, but the distinction can be subtle. Thus,
we call all surveyed works graph storage systems for convenience.

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX


• We summarize the lessons learned from existing graph storage
systems and our experiments to guide future design. In particular,
we list the key considerations/requirements one should clarify
when designing a graph storage system and discuss how existing
techniques can be used to meet these requirements.

Relation to existing surveys. Some surveys have been conducted
on distributed graph processing systems (DGPSs) [52] and graph
databases [17]. In particular, Lu et al. [50] surveyed DGPSs (e.g.,
Pregel [52] and Giraph [2]) by introducing their APIs and sys-
tem designs for efficient distributed execution. Ammar et al. [11]
conducted a more extensive survey for DGPSs, covering systems
that adopt programming models different from the famous vertex-
centric model. However, DGPSs typically work with static graph
while we focus on dynamic graph. For graph databases, Lissandrini
et al. [49] conducted a micro benchmark by testing their perfor-
mance for basic CRUDT operations (i.e., create, read, update, delete,
and traversal). Besta et al. [17] surveyed graph databases compre-
hensively by discussing their data models, storage structures, and
query languages. Graph databases mainly handle property graphs
while our survey focuses on structural graphs and their storage
structures. The most related existing survey is [16], which discusses
various aspects of dynamic graph systems, e.g., overall architec-
ture, programming model and interface, storage, and support for
incremental computation. Our survey is more focused on storage
structure and comes with experiments to understand the perfor-
mance implications of storage.

The rest of the paper is organized as follows. Section 2 introduces
the workloads on dynamic graph and some basic graph storage
structures as background. Section 3 discusses representative graph
storage systems. Section 4 tests and analyzes the performance of
existing graph storage systems with extensive experiments, and
Section 5 summarizes the lessons learned from existing systems.
Section 6 draws the concluding remarks and outlines future direc-
tions.

2 BACKGROUND
We mainly consider structural graph in the form of 𝐺 = (𝑉 , 𝐸),
where 𝑉 is the set of vertices and 𝐸 is the set of edges. We assume
that the graph is directed, and undirected graphs can be stored by
treating each undirected edge as two directed edges. Each vertex
𝑣 ∈ 𝑉 is indexed by a unique integer (called vertex ID), and each
directed edge 𝑒 ∈ 𝐸 from source vertex 𝑣 to destination vertex
𝑢 is indexed by a unique tuple (𝑣,𝑢) ∈ 𝑉 × 𝑉 . Each edge 𝑒 ∈ 𝐸

(resp. vertex 𝑣 ∈ 𝑉 ) can have a weight 𝑤𝑒 (resp. 𝑤𝑣 ), which is an
arbitrary integer or float. Most works store the weight in-line with
each vertex/edge, and thus we do not discuss how a system stores
weight unless it adopts other methods. We also discuss some works
that store property graph (PG)[12], where each vertex (resp. edge)
has one additional label and an arbitrary number of properties
(e.g., age and gender for a vertex with label person), because some
applications may need to store complex properties along with the
graph topology. We refer to the outgoing neighbors (resp. edges)
of a vertex 𝑣 as 𝑣 ’s neighbors (resp. edges). Most works store the
graph in the main memory and on a single machine, and we will
be explicit if a work considers different scenarios (e.g., disk, GPU
or distributed storage).

2.1 Workloads and Performance Metrics
Workloads on dynamic graph can be classified into two main cat-
egories, i.e., update and read. Updates include vertex update (i.e.,
insert or delete vertices), edge update (i.e., insert or delete edges), and
property update (i.e., change the weight or properties of a vertex or
edge). Most works focus on edge update, which changes the graph𝐺
to a new graph𝐺 ′ by applying a set of updatesU = {𝑒+1 , 𝑒

−
2 , · · · , 𝑒

+
𝐾
}

(where 𝑒+ indicates an edge to insert and 𝑒− indicates an edge to
delete ). Property update is usually easier than edge update as it only
requires to locate the properties (which is similar to edge lookup)
while edge update also needs to allocate/de-allocate memory. Ver-
tex insertion is also easy by appending to the storage structure for
vertices and inserting the corresponding edges. Vertex deletion is
more complex as it requires removing not only the outgoing edges
of the target vertex 𝑣 but also the incoming edges that point to 𝑣
(which may span many source vertices). Most existing works do not
discuss vertex deletion, possibly because it is rare in real applica-
tions [13, 21]. If efficient vertex deletion is required, existing works
can be extended by recording the incoming edges for each vertex to
facilitate fast removal. Update can be performed either in a stream-
ing manner [55, 63, 70] (i.e., one update at a time) or in batches
[7, 8, 28] (by accumulating some updates and conducting them
together). The performance metric for update is throughput, which
measures the average number of updates that can be conducted per
second.

Algorithm 1: A general framework for graph algorithms
Input: The graph 𝐺 = (𝑉 , 𝐸)
Output: The result 𝑅𝑒𝑠 (𝑉 )
/* 𝑅𝑒𝑠 (𝑉 ) is vector that contians a number or

data structure for each vertex 𝑣 ∈ 𝑉 */

1 𝑅𝑒𝑠 (𝑉 ) = Initialize(𝐺);
2 while Terminate(𝐺 , 𝑅𝑒𝑠 (𝑉 ))==False do
3 for 𝑣 ∈ 𝑉 that passes filerting condition 𝐹𝑣 (𝑣) do
4 for edge 𝑒 = (𝑣,𝑢) ∈ 𝐸 that passes condition 𝐹𝑒 (𝑒) do
5 𝑅𝑒𝑠 (𝑣), 𝑅𝑒𝑠 (𝑢) = Update (𝑅𝑒𝑠 (𝑢), 𝑅𝑒𝑠 (𝑣));
6 end
7 end
8 end

Reads can be classified into point and graph queries according to
their scopes. Point queries access information related to a single ver-
tex/edge, e.g., verifying whether a vertex/edge exists, fetching the
weight/label/properties of a vertex/edge, and scanning all neigh-
bors of a vertex 𝑣 , and etc. To make point queries efficient, the
storage should support locating a vertex/edge with low cost and
store the edges of a vertex together. Graph queries mainly refer to
graph analytics algorithms that access a large part of the graph, e.g.,
PageRank (PR) [26, 60, 68, 72], label propagation (LP), breadth-first
search (BFS), connected components (CC), triangle counting (TC),
and single source shortest path (SSSP). We provide pseudo codes for
these algorithms in our technical report [6] and summarize them
as the general framework in Algorithm 1.

As shown by Algorithm 1, graph analytics algorithms usually
run iteratively until a termination condition is satisfied. In each

2



(c) Compressed Sparse Row(b) Adjacency List

42

(d) Edge List

31

5

53

41

4
0 2 5 6 8

2 4 1 3 4 5 3 5 1 4

1

5

3

42

(a) Graph

1 2 3 4 5

0 1 2 3 4 5 6 7 8 9

Vtx 2
Vtx 3

Vtx 1

Vtx 4
Vtx 5

Vertex Array
Vtx IDs
Offsets

Vertex Array

Edge Array

Edges

(1,2) (2,1) (2,3) (1,4) 
(4,3) (5,1) (2,4) (4,5) 
(5,4) (3,5) 

Edge Tuples

Figure 1: An example of three basic graph storage formats

iteration, a vertex filtering condition 𝐹𝑣 (𝑣) is used to determine the
vertices to access, and for each qualified vertex, an edge filtering
condition 𝐹𝑒 (𝑒) is used to determine the edges to access. According
to 𝐹𝑣 (𝑣) and 𝐹𝑒 (𝑒), we classify graph analytics algorithms into three
categories, which have different requirements for graph storage.
• Global traversal algorithms, for which both 𝐹𝑣 (𝑣) and 𝐹𝑒 (𝑒) are

null. In other words, these algorithms read all edges of the graph
in an arbitrary order, and examples include PR and LP. They are
efficient if all edges are stored contiguously in memory such
that cache miss is minimized.

• Local traversal algorithms, for which 𝐹𝑒 (𝑒) is null but 𝐹𝑣 (𝑣) is
not. That is, these algorithms access all edges of some specific
vertices in each iteration, and examples include BFS, SSSP, and
CC. They are efficient if the edges of the same vertex are stored
contiguously in memory.

• Fine-grained traversal algorithms, for which both 𝐹𝑣 (𝑣) and 𝐹𝑒 (𝑒)
are not null. These algorithms access some edges for some spe-
cific vertices in each iteration. One such example is TC, which,
for a vertex 𝑣 , only reads outgoing edges that point to destina-
tion vertices with larger ID than 𝑣 . TC is efficient if the edges of
the same vertex are stored contiguously and sorted according to
their destination vertex IDs. Sorted edges also make edge lookup
efficient and update legality check (i.e., if an edge to delete exists)
efficient.
For read operations, the main performance metric is running

time, especially for graph analytics algorithms. Space consumption
is also important, which is the memory taken to store a graph and
usually measured by the blowup compared to compressed sparse
row (CSR), a compact storage format that will be introduced shortly.
Many works also consider scalability, where vertical scalability
measures how update throughput and algorithm running time scale
with the number of threads, and horizontal scalability measures
how the two performance metrics scale with the size of the graph.
Besides accessing the latest graph, some applications may require to
access the graph up to some point in time or guarantee that a read
operation should see no updates submitted after it. In these cases,
timestamps are stored with each vertex/edge to indicate when they
are updated.

2.2 Basic Graph Storage Formats
We introduce three basic graph storage formats, i.e., adjacency
list, CSR, and edge list, which serve as the foundation for further
discussion as most works either enhance (one of) them or combine

their features. Figure 1 shows how a graph is stored using the three
formats as example.
Adjacency list stores the edges of each vertex 𝑣 as a linked list and
uses an array to store the head of the linked lists for all vertices. In
a linked list, each element contains the ID of the destination vertex
and a pointer to the next element. The advantages of adjacency list
are that it is easy to parallelize update/read for different vertices, and
memory can easily be allocated/deallocatedwhen inserting/deleting
edges. The disadvantages include large space consumption due to
the pointers and high cost to access all edges of a vertex due to the
case misses caused by pointer chasing.
CSR uses a vertex array and an edge array to store a graph. The
𝑖-th element in the vertex array records the starting position of the
edges of vertex 𝑣𝑖 in the edge array, and the edges of each vertex
are stored contiguously and sorted in the edge array. CSR is widely
utilized to store static graphs due to its small memory footprint and
efficient read (as the edges are contiguous in memory). However,
CSR is extremely inefficient for updates as the entire vertex/edge
array needs to be adjusted for a single edge insertion/deletion.
Edge list stores a graph as a set of unordered edge tuples. It is very
efficient for edge update, which is conducted by appending a record
(with a deletion indicator for edge deletion). However, reading the
neighbors of a vertex (or a specific edge) is expensive as it requires
to scan the entire edge list.

Adjacency matrix, which stores an 𝑛-vertex graph using an 𝑛 ×𝑛

matrix and uses 1 to indicate edges in the matrix, is also a well-
known graph storage format. It is seldomly used in related works
as they usually consider large graphs that are extremely sparse, for
which adjacency matrix has very high memory consumption.

3 DYNAMIC GRAPH STORAGE SYSTEMS
Table 1 summarizes 21 existing dynamic graph storage systems
and their key features. According to their basic storage structures,
we classify them into three categories, i.e., adjacency list variants,
CSR variants and hybrids. Adjacency list variants store the edges
of different vertices in separate structures; CSR variants store the
edges of many vertices in a shared structure; hybrids jointly utilize
different basic storage structures to enjoy their benefits. In the fol-
lowing, we introduce and discuss representatives of each category.

3.1 Adjacency List Variants
These systems usually store the edges of different vertices separately
using pointer-based structures (e.g., linked list, linked list of blocks,

3



Vtx 1

name:”Bob”

age:25

Edge Vtx 2

name:”Amy”

Previous edges 
for Vtx 1 & 2

Next edges 
for Vtx 1 & 2 Node Properties

Person

Node Label

Person

Secondary Index

Edge Block 1
Type: a

𝑒 𝑒 𝑒

𝑒Edge Block 2
Type: a

𝑒 𝑒Edge Block 3
Type: b

Type: a
Type: b
Type: c

…

…

𝑒𝑒

𝑒 𝑒𝑒 𝑒

1

0 2

C-Tree

3Vertex Tree

4

…

(a) Neo4j storage format (b) Stinger storage format (c) Aspen storage format

Vtx 1 Vtx 2 ...

Figure 2: An illustration of representative graph storage systems in the adjacency list variants category

Table 1: A summary of 21 dynamic graph storage systems,
PG means property graph and SG means structural graph,
AL stands for adjacency list and EL stands for edge list,
Sorted refers to whether the edges of each vertex are sorted
and Index means the indexes built for vertex/edge lookup

System Model Basic Struct Sorted Index
Neo4j[3] PG AL No None

Stinger[32] SG AL No Hash
Aspen[28] SG Tree Yes C-Tree

RisGraph[35] SG CSR No Hash
Sparksee[54] PG Tree Yes B+ Tree
Tegra[43] PG Tree Yes ART
LLAMA[51] SG CSR No None
Grace[58] SG CSR Yes Hash

LiveGraph[75] PG CSR No None
PCSR [71] SG CSR Yes None
GPMA [66] SG CSR Yes None
Teseo [27] SG CSR Yes ART+Hash
CSR++ [36] PG CSR Yes None

GraphOne [45] SG AL+EL No None
ZipG [44] PG AL+EL Yes Hash
A1 [22] PG CSR+Tree No B-Tree

Terrace [57] SG CSR+Tree Yes B-Tree
GridGraph [76] SG EL No None
GraPU [67] SG AL No Hash
Weaver [30] PG KV No Hash

Graphflow [38] PG CSR Yes None

or variants of tree), and each element (e.g., leaf in the tree) in the
structures are typically aligned with cache line size for efficient
memory access. In particular, if the edges of a vertex are sorted,
trees are usually adopted to maintain the order during updates;
otherwise, linked list or linked list of blocks are used for the efficient
update. These systems inherent the trade-offs of linked list: the
advantages include easy parallelization for different vertices, and
simple update procedure, and flexible schema (which is important
for storing variable-length properties); the drawback is expensive
graph traversal operations due to pointer chasing, albeit that using
large block alleviates this problem.
Neo4j is a transactional graph database designed to store data on
the disk. As shown in Figure 2(a), Neo4j extensively uses pointers
in its storage structure. In particular, each edge stores two pointers
to its source vertex and destination vertex, four pointers to the

previous and next edges of the source vertex and destination vertex.
Each vertex stores a pointer to the first edge in its adjacency list.
The properties are stored in a doubly linked list of blocks with a
block size of 41 bytes, and each vertex/edge stores the pointer to
the head of its property linked list. All data (i.e., vertex, edge, and
property block) in Neo4j have fixed size and different kinds of data
are stored in separate files, which enables to calculate the physical
location of an entry using its ID.

Property and edge insertions are conducted by adding new en-
tries at the head of their respective linked lists. Read and deletion
need to scan the linked list to look up the target edge/property. For
analytical algorithms that enumerate all edges of a vertex, Neo4j has
a high cost due to pointer chasing. However, the pointer-rich struc-
ture makes it easy to store vertices/edges having different schemas
and thus a number of properties, and support ad-hoc graph traver-
sal queries (e.g., accessing vertices with an edge that passes certain
property filtering), which are common for graph databases.
Stinger uses linked list of blocks as shown in Figure 2 (b). The
vertices are organized in an array (called logical vertex array, LVA)
and can be accessed by their IDs. Each vertex holds a pointer to
the linked list of edge blocks, and each block in the linked list
contains a fixed number of slots (32 by default and configurable
by the user) for edges with the same type (i.e., label). Edges with
different types are stored in separate blocks even if some blocks
are not full. e.g., block 2 in Figure 2 (b). The properties are stored
in line with each edge including destination vertex ID, edge type,
edge weight, and two timestamps. The timestamps are used for
accesses-based time semantics, for example, reading the graph up
to a point in time or fetching updates to the graph within a time
interval. Each edge block also stores metadata including the lowest
and highest timestamps of the edges and the high-water mark of the
valid edges within the block. To access all edges with a given type,
Stinger maintains an index called edge type array (ETA), which
uses edge type as the key and maps to all edge blocks with the type.

To insert an edge, Stinger first scans the linked list to check
whether the edge already exists. If so, the existing edge is updated
with new properties; otherwise, the new edge is appended to an
edge block of its type. If existing blocks do not have space, Stinger
allocates a new block and adds it to the ETA. Edge deletion is
conducted by first scanning the linked list to find the target edge
and then removing it, and the freed space is reused for new edges.
In summary, Stinger uses large blocks in the linked lists to reduce

4



Vtx 2Vtx 1 3
Segment

ART

…𝑒

Hash Table

Fat Tree

𝑒 𝑒 4 𝑒

Degree

VB VB

Dest vtx ID

… TEL TEL…VB

Vertex Index Edge Index

…

Vtx 1 𝑝 𝑝 𝑒 𝑒 Creation TS
Invalidation TS
Properties size

(b) LiveGraph storage format (c) Teseo storage format

𝑒 𝑒 𝑒 p p

Vertex
Tables

Edge Tables

Indirection 
Tables

Snapshot 0 Snapshot 1

(a) LLAMA storage format

21

- - - - 1 - - - -

3 4
Page 0 Page 1 Page 1’

Deletion
Vectors

Leaf

-

3 4

TEL…

Figure 3: An illustration of representative graph storage systems in the CSR Variants category

pointer chasing and improve traversal performance but update is
slow as all edges of a vertex are scanned.
Aspen uses tree to store both the vertices and the edges of each
vertex as shown in Figure 2(c). Specifically, the vertices are stored in
a binary tree according to their IDs, and each tree node corresponds
to a vertex. Each vertex stores the pointer to the root of a compressed
tree (i.e., C-tree), in which each tree node is a block that stores some
of its edges. C-tree is a search tree as it keeps the edges sorted, and
in each tree node, the edges are compressed with delta encoding
and encoded via byte code [69]. Each node in a C-tree is constrained
to be larger than 32 bytes but smaller than a threshold with high
probability. Re-balancing is conducted when the size constraints
are violated. Note that Aspen stores only graph topology and does
not support additional properties including edge weight.

The edge update operations (both insertion and deletion) are
conducted in batches by merging C-Trees. For each batch of up-
dates, Aspen first sorts the edges according to their destination and
source vertices, and then builds a C-Tree for update edges with the
same source vertex. After that, updates are performed by merging
two C-Trees (one for existing edges and one for update edges) for
each vertex. This batch optimization enables Aspen to achieve high
update throughput at large batch size. C-tree compresses the edges
and keeps them sorted, and thus Aspen has small memory foot-
print and good read performance. However, Aspen cannot support
applications that require vertex/edge properties.
RisGraph stores the vertices using an array and the edges of each
vertex using a dynamic array. Edge insertion is conducted by adding
the new edge at the end of the dynamic array of the source vertex.
When deleting an edge, RisGraph marks it as a tomb edge, and
recycles the space when resizing the dynamic array. RisGraph con-
ducts resizing when a dynamic array is full or the fill factor (i.e.,
the number of live edges divided by total number of slots) is low,
and doubles or halves the array each time. As the edges of a vertex
are not sorted, a full scan is required to look up a specific edge,
which is expensive for high degree vertices. To tackle this problem,
RisGraph builds a hash index for high degree vertices (with more
than 512 edges by default), which is used to look up the offset of
an edge in the dynamic array using destination vertex ID.

Beside the aforementioned systems, some other systems also
adopt adjacency list structure. Like Neo4j, Sparksee [54] is a graph
database and designed for disk storage. Sparksee models vertices,
edges and properties as key-value pairs in the form of <object,
identifier> and indexes them by separate B-Trees. Each vertex uses

a bitmap to record its edges, and the bit map is compressed to
reduce space consumption. Tegra [43] uses a persistent version of
the adaptive radix tree (pART) [47], which adds persistence to ART
by conducting path copying. In particular, Tegra uses one pART to
store the vertices (with vertex ID as key) and one pART to store the
edges (with source and destination vertices as key). The leaves of
the pARTs store pointers to the vertex/edge properties. The edges
of a vertex are fetched via prefix matching in the edge pART. The
benefits of pART include efficient update and range scan.

3.2 CSR Variants
CSR variants usually store the edges of different vertices together
like CSR but reserves empty space for efficient update. This makes
graph traversal efficient by reducing cache miss but locking may
be required when updating the edges of different vertices. If the
edges are unsorted, dynamic array is usually used as the underlying
storage structure; otherwise, data structures such as PMA are used
to maintain the sorted order.
LLAMA stores a graph as a series of snapshots, and each snapshot
adopts a structure similar to CSR as shown in Figure 3 (a). Specifi-
cally, each snapshot stores updates to the graph within a period of
time and consists of three parts, i.e., indirection array, vertex table
and edge table. Each element in the indirection array corresponds
to a block of vertices; if a block of vertices receives no updates
in the current snapshot, its indirection element stores the pointer
to the same vertex block in the latest snapshot that has updates.
This design reduces space consumption by skipping vertex blocks
without changes. If a vertex block has updates, its vertices and in-
serted edges are stored using a format like CSR. The difference from
vanilla CSR is that after the last edge of each vertex, LLAMA stores
a pointer to the first edge of the vertex in the previous snapshot.
This allows to scan all edges of a vertex by following the pointers
across the snapshots.

For each batch of updates, LLAMAbuilds a snapshot for the edges
to insert. For the edges to delete, LLAMA marks them as deleted
via a bit map in the snapshots that contains them. LLAMA allows
to merge snapshots by removing deleted edges and gathering the
edges of a vertex in different snapshots. Update, especially deletion
is not efficient for LLAMA as it requires to tracing the snapshots to
find the edge. Read and graph traversal also suffer from cachemisses
when accessing the edges of a vertex via pointers. However, the

5



1 2 3 4 5 6 7 8

𝜌 , 𝜏 𝜌 , 𝜏

𝜌 , 𝜏

𝑙𝑜𝑔𝑁 Segments

Height 0

Height 1

Height 2

0 1

PMA

Start/End
Vtx IDs

(0,5) (5,14) …

PCSR
S 𝑒 𝑒 S 𝑒 𝑒 𝑒 𝑒

Figure 4: The structure of PMA and PCSR

snapshots allow LLAMA to keep the graph up to some predefined
points in time.
Grace also uses snapshots of CSR like LLAMA. In each snapshot,
Grace is similar to CSR and stores the vertices in a vertex log and
the edges in an edge log. As the vertex IDs in the vertex log are
not necessarily continuous, an edge pointer array is used in each
snapshot to map each vertex to the offset of its edges in the edge
log. Grace creates a snapshot for each batch of updates, and copies
the edge pointer arrays of all previous snapshots to a new snapshot
such that a vertex can access its edges in previous snapshots. Note
that the edge logs are not copied to reduce space consumption.
To parallelize execution over a multi-core CPU, Grace partitions
the graph by source vertex ID and assigns each core to handle a
segment of source vertices. For an inserted vertex, Grace uses a
tailored algorithm to determine which core it should go to.
LiveGraph stores each vertex in a vertex block (VB) and the edges
of each vertex in a transaction edge logs (TEL) as shown in Figure 3
(b). The VBs and TELs are organized together in an array. Both VB
and TEL adopt a copy-on-write structure, and links to their previous
version. The latest version of each VB and TEL can be found the ID
of the (source) vertex via hash indexes, i.e., the vertex index and
edge index in Figure 3 (b). Each edge keeps a destination vertex ID,
two timestamps (one for creation and one for invalidation) and a
property size at the tail of its TEL, and the actual properties at the
end of the TEL. TEL reserves space in the middle for updates and
scales its size by twice once it is full.

Before conducting edge updates, LiveGraph uses a bloom filter
to check if the edge to delete/insert already exists. To insert an edge,
LiveGraph appends its information (e.g., destination vertex ID) to
the head of the TEL of the source vertex and properties to the end of
the TEL. If the edge already exists, the invalidation timestamp of the
old edge and the creation timestamp of the new edge are both set as
the current time. To delete an edge, LiveGraph sets its invalidation
timestamp to the current time to indicate deletion. LiveGraph can
truncate the version linked list and recycle deleted edges for com-
paction. Overall, the read of LiveGraph performance suffers from
the additional information it stores (e.g., timestamps). However,
the timestamps allow LiveGraph to support time semantics and an
explicit property size enables each edge to have a variable number
of properties.
PCSR is based on the packed memory array (PMA) [14, 41], which
we briefly introduce as its variants are widely used for graph storage.

The upper part of Figure 4 shows an example of PMA. Specifically,
PMA is an array that keeps the elements sorted and reserves empty
slots for efficient insertion/deletion. For an array with 𝑁 elements,
PMA divides it into segments with length 𝑂 (log𝑁 ) and maintains
an implicit binary tree by treating the segments as leaves. In the
binary tree, each non-leaf node covers all leaf segments in its sub-
tree, and comes with an upper bound (𝜌) and lower bound (𝜏) for
the overall fill factor of its segments. To conduct updates, PMA uses
a binary search to find the position for insertion/deletion. If the fill
factor bounds are violated after an update, a re-balancing operation
is triggered, which first recursively finds a tree node, within which
the fill factor bounds hold, by traversing the tree bottom-up, and
then reallocates the elements among the segments covered by the
tree node to satisfy all fill factor bounds. The amortized update cost
of PMA is 𝑂 (log𝑁 ) on average and 𝑂 (log2 𝑁 ) in the worst case
[15].

As shown in the lower part of Figure 4, PCSR essentially adds
a vertex array and uses PMA as the edge array in CSR. The edges
of each vertex are sorted in PMA, and each element in the vertex
array marks the starting and ending positions of the edges of the
vertex in PMA. The ‘S’ mark at the starting position for each vertex
is a pointer that links back to the vertex array, which is used to
modify the vertex array when adjusting the PMA. Although PCSR’s
open-source implementation does not support edge deletion, it is
due to engineering effort rather than the structural limitation of
PMA. PCSR achieves efficient update by using PMA, and traversal is
also quick by keeping all edges in an array. The drawbacks include
larger memory consumption as PMA is not entirely filled and the
requirement for locking when accessing each segment.
GPMA adapts PMA for dynamic graph storage on GPU, which
significantly outperforms CPU in computation power and mem-
ory bandwidth. As GPU has far more threads than CPU, GPMA
focuses on parallelizing PMA update operations and proposes two
update schemes. The first is a workload-parallel scheme, where
each thread takes one edge update, checks for the segments that
need to be locked for the update (may lock multiple segments due
to re-balancing), tries to acquire the locks until successful, and fi-
nally conducts the update. As this scheme hinders parallelism due
to lock contention among the threads, a lock-free scheme called
GPMA+ is proposed, which first organizes updates that lock the
same segments into a group and then conduct updates for indepen-
dent groups that lock different segments concurrently.
Teseo organizes several segments in PMA as a leaf in the fat tree
(a variant of B+ Tree) as shown in Figure 3 (c). A leaf is a basic unit
for locking and resizing, and when the size of a leaf exceeds a given
threshold𝐶𝐿 , it will be split into two leaves. In each segment, Teseo
stores the vertices in increasing order of their IDs, and each vertex
is followed by its number of edges and the destination vertices of
the edges. Each segment also records the smallest and largest vertex
IDs in it as metadata. Teseo uses an ART as the primary index to
locate the starting segment of each vertex (the data of a vertex may
span multiple segments), and a hash table as the secondary index
for each segment to locate the position of a vertex in the segment.

Update operations of Teseo resemble PCSR but have some differ-
ences. First, when a segment is full, Teseo adopts an edge list to host
the inserted edges to delay the resizing operation. Second, Teseo

6



𝑒𝑒

𝑒

𝑒𝑒 p

Shared PMA

B-Tree

𝑒

Vertex Blocks

𝑒𝑒 p𝑒

𝑒 …𝑒 𝑒 𝑒

Vtx 1 Vtx 2
…
…

Vtx 1

Vtx 2

𝑒 𝑒 …

Edge 
Type

Dest 
Address

Data 
Address

Data 
Size

Header

Edge Data

B-Tree

Adjacent Edges

…

𝑒𝑒

𝑒 …

𝑒 𝑒

𝑒 𝑒 𝑒 𝑒 …

Circular Edge List

Vtx 2

Vtx 3

…

𝑒 𝑒

𝑒 𝑒𝑒

-1

𝑆

𝑆

𝑒

Global Snapshot List

Block List

(c) Terrace storage format(b) A1 storage format(a) GraphOne storage format

𝑒𝑒 p𝑒

Vtx 3

… 𝑒

Vtx 1

Figure 5: An illustration of representative graph storage systems in the hybrid structure category

does not actively re-balance a leaf when its fill factor is low due
to edge deletions. Instead, a service thread is used to periodically
visit the fat tree to merge small leaves. In summary, Teseo improves
PCSR by reducing the range and frequency of re-balance operations
for lower update costs.

Some other systems also adopt CSR-style structures. CSR++ [36]
adopts a block-based CSR structure, which partitions the vertex
array of CSR into blocks and uses a dynamic array to store the
edges of each vertex block. This design narrows down the range of
adjustment during updates from the entire structure to a block.

3.3 Hybrid Storage Systems
Hybrid systems jointly use multiple basic structures to store a
graph. As different basic structures excel in different aspects, hy-
brid systems can enjoy the advantages of multiple structures. The
key design choices are how to combine the basic structures and
transform the graph across different representations.
GraphOne jointly utilizes the adjacency list and edge list as shown
in Figure 5(a). The adjacency list is used to store archived edges and
is a linked list with block size aligned with the cache line. The edge
list is used to store edge updates and implemented as a circular
buffer. Both inserted and deleted edges are appended to the edge
list, and a special mark is used for deleted edges. Updates in the
edge list are merged into the adjacency list when instructed by the
user or the edge list reaches a certain size. To conduct the merge,
the edge updates are first grouped according to their source vertex
ID and then added as new blocks to the rear of the adjacency lists.
GraphOne tracks different snapshots of the graph, and thus edge
updates in different snapshots are stored in separate blocks even if
some blocks are not full. By combining the adjacency list with the
edge list up to some point in time (e.g., 𝑆0 and 𝑆1 in Figure 5(a)),
GraphOne allows to access the graph at specific time points using its
GraphView interface. In summary, GraphOne allows quick update
and fine-grained version tracking using an edge list, and efficient
access to the edges of a vertex using an adjacency list. However,
graph traversal can be inefficient if the edge list is large.
ZipG builds on Succinct [9], a distributed data store that supports
random access and sub-string search on compressed unstructured
data and key-value pairs. The archived vertices and edges are stored
in two flat unstructured files, i.e., Nodefile and EdgeFile. A single
LogStore is used to store the updates across all machines. Once the
size of the LogStore reaches a threshold, it is compressed into a

shard, which spreads over multiple machines. To record the data
of each vertex/edge, ZipG uses a set of update pointers, which
store offsets in the NodeFiles or EdgeFiles on other machines. The
EdgeFile is similar to the adjacency list and used to archive data
while the LogStore is similar to the edge list and used to accept
updates.
A1 is a distributed in-memory graph storage system developed by
Microsoft. As shown in Figure 5(b), A1 jointly utilizes the adjacency
list and B-tree. Each edge in A1 keeps edge type, destination vertex
address, the size and address of the edge properties. For vertices
with small degrees, A1 stores their edges using separate arrays and
keeps the edges sorted. For vertices with high degrees (>1000 by
default), A1 uses a shared B-tree for the edges of all such vertices,
and each edge uses its source vertex and destination vertex as
keys. The rationale is to make edge update efficient for high-degree
vertices as keeping the edges sorted is expensive (which requires a
scan) if the array is large. A1 randomly assigns the vertices to the
workers and stores data using FaRM [29], a RDMA-enabled object
storage, for efficient communication among the workers.
Terrace uses a 3-level structure as shown in Figure 5(c), i.e., in-
place, array, and tree. The place to store a vertex is determined by
its degree 𝑑𝑣 and two thresholds 𝑆 and 𝐿. The in-place level uses
an array, which stores the first 𝑆 edges of each vertex, and thus
vertices with less than 𝑆 edges only appear in the in-place level. For
vertices with 𝑆 < 𝑑𝑣 ≤ 𝑆 + 𝐿, their additional edges are stored in a
PMA shared by all such vertices in the array level. For each vertex
with 𝑑𝑣 > 𝑆 + 𝐿, a separate B-tree is used to store its additional
edges. For each vertex, the in-place level keeps a pointer to the
position of its edges in the array or tree level.

Terrace is driven by the observation that real graphs usually
follow power-law distribution [34], which means that a few ver-
tices have significantly higher degrees than average. By storing
the low-degree vertices in an in-place array, they can be fetched
together during graph traversal to reduce cache miss. The high-
degree vertices are more likely to receive updates, and thus storing
them in B-trees benefits from the more efficient update than PMA.
Moreover, using separate B-trees for high-degree vertices also al-
lows easy parallelization and reduces locking on PMA. Updates in
Terrace follow the standard procedure of the structures. A special
case is when the degree of a vertex changes across the thresholds,
which requires removing its edges from a level (e.g., PMA) and
adding them to another level (e.g., B-tree).

7



Table 2: Graph datasets used in the experiments

Graph Vertices Edges Type

LiveJournal 4,846,610 68,475,391 Directed
Orkut 3,072,442 234,369,798 Undirected
Uniform-24 13,306,414 520,759,040 Undirected
Graph500-24 16,777,216 520,759,040 Undirected
Twitter 41,652,231 1,468,365,182 Directed
Friendster 68,349,467 2,586,147,869 Directed

4 EXPERIMENTAL EVALUATION
In this part, we conduct extensive experiments to evaluate represen-
tative dynamic graph storage systems.We introduce the experiment
settings in Section 4.1 and analyze the experiment results for update,
read, algorithm execution, scalability, and memory consumption in
Sections 4.2-4.6, respectively. We note that the performance com-
parisons among the systems are not entirely apple-to-apple as they
make different choices such as the data to store and the level of data
consistency. In our analysis, we will try to trace the performance
influence of the storage structures.

4.1 Experiment Settings

Datasets.We use the graphs in Table 2 for the experiments. Among
them, LiveJournal [20], Orkut [4], Twitter [46], and Friendster [1]
are real-world graphs widely used to evaluate dynamic graph stor-
age systems. Uniform-24 and Graph500-24 are synthetic graphs
generated following [24]. The vertex degrees of Uniform-24 are
uniform while Graph500-24 follows the power-law distribution.
Due to page limit, we report the results for Orkut (a real and power-
law graph) and Uniform-24 (a synthetic and uniform graph, called
Uniform for conciseness hereafter) in the paper and provide the
results on other graphs in our technical report [6].
Experiment design. We evaluate 9 dynamic graph storage sys-
tems, i.e., Teseo [27], Terrace [57], Aspen [28], RisGraph [35], LiveG-
raph [75], GraphOne [45], LLAMA [51], Stinger [32] and PCSR [71].
We did not evaluate Neo4j [3] and Sparksee [54] as they are de-
signed for disk storage. A1 [22] and Tegra [43] are not included
because they are not open-source. For all systems, we adopt the
implementations and compilation environments recommended by
their papers, and tune the configurable parameters to optimize
performance.

We report the performance of the systems in three main aspects,
i.e., update, read and algorithm. The design and performance metric
of each experiment is introduced as follows:
• Update, which inserts/deletes edges for the graph. Following

existing works [40, 57], we use the RMAT generator [24] to
generate a batch of random edges as the update edges. For each
batch, we first insert all update edges into the initial graph and
then delete them. We record the time to conduct each batch
of edge insertion/deletion and repeat 20 times for each batch
size to compute the average time consumption, which is then
transformed into update throughput.

• Read, which reads local information from a graph and corre-
sponds to lookups. We use three kinds of read operations. Edge
read checks random edges generated using RMAT, which may

or may not exist in the graph, and returns the edge weight if an
edge exists. 1-hop and 2-hop read the 1-hop and 2-hop neighbors
of random vertices, respectively. For each run, we sample 5% of
the number of graph edges for edge read and use 5% of the ver-
tices in the graph for 1-hop and 2-hop read. We repeat 20 times
and report the average execution time of the read operations.

• Algorithm, which runs analytical algorithms on the graph. We
use 6 graph algorithms in the LDBC benchmark, i.e., BFS, SSSP,
PR, WCC, CDLP, and TC. As discussed in Section 2.1, PR, WCC,
and CDLP are global traversal algorithms, BFS and SSSP are local
traversal algorithms, and TC conducts fine-grained traversal. For
the algorithms, we report the average execution time over 20
runs and exclude the first run to avoid cold cache.
By default, we use 16 threads for the experiments and a batch size

of 105 for update operations. As PCSR does not support multi-thread
update, we use a single thread for it in the update experiments.
For the update and read operations, we use the update and read
interfaces provided by the systems. In particular, Aspen, Terrace
and Stinger provide interface for batch update. To implement the
graph algorithms, we adopt the vertex-wise parallel paradigm of
Ligra [68], which assigns each thread to handle the workloads on
some vertices. Our experiment scripts are open-source [5] with the
hope of assisting future researches.
Platform. Our experiments are conducted on a single machine
with an Intel Xeon Gold 5122 CPU, which has 8 cores, 16 threads,
16.5MB L3 cache and 512GB DRAM. The Linux kernel version is
4.15.0.

4.2 Update Performance
Figure 6 reports the update performance of the systems. We omit
PCSR from the edge deletion experiments as it does not support
deleting edges. The results show that the performances for edge
insertion and deletion are similar, and the trend are consistent for
the two graphs. We make the following observations from Figure 6.

GraphOne, Aspen, PCSR, and Terrace achieve high update through-
put among the systems. GraphOne is efficient because it conducts
edge updates by appending records to the edge list and does not
check the legality of updates (e.g., whether an edge to delete exists).
Aspen has high throughput at large batch size because each vertex
is more likely to receive multiple updates at large batch size. As-
pen first organizes updates for each source vertex as a C-tree and
then conducts updates by merging C-trees. PCSR and Terrace adopt
sophisticated data structures (i.e., PMA and B-tree), which have a
low amortized update cost. Although Teseo also adopts PMA, it
has lower throughout than PCSR and Terrace because it conducts
legality checks for the updates.

LiveGraph, LLAMA and RisGraph provide low update through-
put among the systems. This is partially because they all conduct
legality checks for the updates. The edges are not sorted for the
three systems, which necessitates scanning all edges of a vertex for
legality check and is expensive for the pointer-based structure of
LLAMA and RisGraph. LiveGraph stores more information for each
edge (i.e., two timestamps and property size), and thus the work-
load for update is heavy. LLAMA creates a new snapshot for each
batch of edge insertion but only marks the deleted edges in their

8



101 102 103 104 105 106 107

Batch Size

103

104

105

106

107

Th
ro

ug
hp

ut

Insertion for Orkut

101 102 103 104 105 106 107

Batch Size

103

104

105

106

107

Th
ro

ug
hp

ut
Insertion for Uniform

101 102 103 104 105 106 107

Batch Size

103

104

105

106

107

Th
ro

ug
hp

ut

Deletion for Orkut

101 102 103 104 105 106 107

Batch Size

103

104

105

106

107

Th
ro

ug
hp

ut

Deletion for Uniform

Aspen Terrace Teseo RisGraph LiveGraph GraphOne LLAMA Stinger PCSR

Figure 6: Update throughput on Orkut and Uniform

Edge 1-HOP 2-HOP

10−1

100

101

Ru
nn

ig
 T

im
e 

(s
ec

)

Orkut

Edge 1-HOP 2-HOP

10−1

100

101

Ru
nn

ig
 T

im
e 

(s
ec

)

Uniform

Aspen Terrace Teseo RisGraph LiveGraph GraphOne LLAMA Stinger PCSR CSR

Figure 7: Running time of the read operations on Orkut and Uniform

original snapshots, and thus it achieves much better performance
for deletion than insertion.

The update throughput of most systems first increases with
batch size but then stabilizes. This is because the relative costs of
initializing and scheduling the threads w.r.t. the actual workload are
large at small batch size but reduce at large batch size. GraphOne
has a stable throughput under different batch sizes as its amortized
update cost is low, and thus computation is not the bottleneck. The
throughput of Terrace and RisGraph may decrease when increasing
the batch size as they are more likely to adjust data structures (e.g.,
migrating among different levels for Terrace and array resizing for
RisGraph) at large batch size.

4.3 Read Performance
We report the running time of the three read operations in Figure 7.
CSR, which is used to store static graphs, is included as a baseline.
We can make the following observations from Figure 7.

PCSR, Teseo and Aspen achieve good performance for edge read.
This is because both PCSR and Teseo adopt the PMA structure to
keep the edges of each vertex in a continuous and sorted array,
which makes edge lookup fast with binary search. Although Ter-
race also adopts the PMA structure, it is slower than PCSR and
Teseo because edge lookup needs to switch among its 3-level stor-
age structure. Aspen is efficient because its C-tree keeps the edges
sorted and delta encoding is utilized to compress the edges, which
yields a small memory footprint. LiveGraph and Stinger are slow
because their edges are not sorted (which makes edge lookup ex-
pensive) and they store additional information with each edge. In
particular, LiveGraph keeps two timestamps and a property size

for each edge and needs to traverse the edge properties to obtain
the edge weight. Stinger keeps two timestamps, a weight and a
label for each edge, and its linked list structure also makes edge
lookup slow. Although RisGraph builds hash indexes for vertices
with more than 512 edges, it is slow as the degrees of most vertices
are smaller than 512 for Orkut and Uniform and thus edge lookups
are mainly conducted by linear scan.

For 1-hop and 2-hop reads, LLAMA and Stinger are significantly
slower while the performance gaps for the other systems are not
large. This is because LLAMA and Stinger use linked list and do not
store the edges of each vertex continuously. In particular, LLAMA
stores the edges of a vertex in different snapshots while Stinger
uses blocks in its linked list. LiveGraph becomes more efficient
for 1-hop and 2-hop reads than edge read as it stores the edges
and their weights separately and read less data for only the graph
topology. Overall, the systems have larger performance gap on the
power-law Orkut graph than the Uniform graph. This is because
Orkut has some large degree vertices, which have a big influence
on performance. Note that we conduct experiments for GraphOne
on its static view, otherwise, it needs to traverse the entire edge list
for each read operation, which is extremely slow.

4.4 Algorithm Execution
Figure 8 reports the execution time of the 6 representative graph
analytic algorithms, and the results of CSR are reported as a base-
line. As Aspen does not allow edge weight, we exclude it from the
experiments for SSSP. We make the following observations.

9



BFS SSSP PR CC LP TC

10−1

100

101

102

103

Ru
nn

ig
 T

im
e 

(s
ec

)

Orkut

BFS SSSP PR CC LP TC

100

101

102

Ru
nn

ig
 T

im
e 

(s
ec

)

Uniform

Aspen Terrace Teseo RisGraph LiveGraph GraphOne LLAMA Stinger PCSR CSR

Figure 8: Running time of graph analytics algorithms on Orkut and Uniform

1 4 8 12
Thread

0

2

4

6

8

Sp
ee

du
p

Insertion

1 4 8 12
Thread

0

2

4

6

8

Sp
ee

du
p

Deletion

Aspen
Terrace

Teseo
RisGraph

LiveGraph
GraphOne

LLAMA
Stinger

Figure 9: Thread scalability for edge insertion and deletion
on Orkut, results for each system normalized by 1 thread

Aspen and systems that adopt an array structure (i.e., Terrace,
Teseo, PCSR and RisGraph) are generally fast. This is because As-
pen conducts edge compression and does not store edge weight,
and thus graph traversal only reads a small amount of memory.
The PMA used by Terrace, Teseo, PCSR and the dynamic array of
RisGraph keep the edges of each vertex continuous in memory, and
thus are also efficient for graph traversal by reducing cache misses.
In contrast, LLAMA, Stinger and GraphOne take a long time to run
the algorithms because they use linked-list-based storage for the
edges of each vertex and thus require expensive pointer chasing. In
particular, LLAMA can keep the edges of a vertex in different snap-
shots and link them by pointers. Stinger and GraphOne directly
use linked list of blocks to store the edges. For the TC algorithm,
systems that keep the edges sorted (i.e., Terrace, Teseo, PCSR and
Aspen) are significantly faster than systems that keep unsorted
edges (i.e., RisGraph, LiveGraph, GraphOne, LLAMA, and Stinger).

4.5 Scalability

Thread. Figure 9 reports how the update throughput of the systems
scales with the number of threads. This set of experiments are
conducted under the default batch size of 105, and we did not
include PCSR as it does not support multi-thread update. Under
each thread count, we normalize the update throughput of a system
by its throughput when using 1 thread. This is because the systems
have huge differences in actual throughput (see Figure 6), which
will make the figure unreadable when plotted together. We only

include the results on Orkut due to page limit and note that the
results are similar for Uniform (see our technical report). We can
make the following observations.

Stinger, Aspen, and RisGraph achieve good scalability for both
edge insertion and deletion. Stinger conducts fine-grained locking
at edge granularity and thus the updates will not block each other.
Aspen and RisGraph use a C-tree [28] and dynamic array for each
vertex, respectively, and thus the edges for each vertex can be
updated without locking. GraphOne has poor scalability and its
update throughput may even drop when using more threads. This
is because its edge list is shared by all threads and thus needs to
be locked and unlocked frequently. For a similar reason, LLAMA
has poor scalability for edge insertion as it stores all new edges in a
write store, which is contended by the threads. However, LLAMA
has good scalability for edge deletion because the threads can work
in parallel to add deletion marks for different edges. Terrace and
Teseo have moderate scalability as the PMA structure is shared
by all vertices and needs to handle threads contention by locking.
In particular, Terrace does not allow multi-thread deletion (which
explains the horizontal scalability curve), and Teseo locks a leaf of
the fat-tree for re-balance. The update throughput of Teseo drops
when increasing from 8 threads to 12 threads because it spawns a
service thread on each core to conduct re-balancing and garbage
collection, and using 12 threads for update leaves only 4 service
threads for the 8 cores. The drop of scalability for LiveGraph is also
observed by [27], and may be caused by its transaction manager.

Figure 10 reports the running time of the systems for the read
workloads and graph analytics algorithms when using the different
number of threads. Due to page limit, we select BFS and PR as
representatives of the algorithms, and only include the results on
Orkut. The results for the other algorithms and the Uniform graph
exhibit similar trends, and can be found in our technical report.
Figure 10 shows that the systems generally achieve good thread
scalability for the read operations and analytical algorithms as these
tasks only read data and have no contention among the threads.
The exception is for 1-hop read, and the poor scalability is because
the workload is lightweight and thus the overheads of launching
and scheduling the threads are substantial. All systems have better
scalability for PR than for BFS. This is because BFS only accesses
the edges of some vertices in each iteration while PR accesses all
edges in the graph, and thus PR can better utilize the threads.
Data. Figure 11 reports the running time of the read operations and
analytics algorithms on graphs with different sizes when using 16

10



1 4 8 12
Thread

100

101

Ru
nn

in
g 

Ti
m

e 
(s

ec
)

Edge

1 4 8 12
Thread

10−1

100

1-HOP

1 4 8 12
Thread

101

102

2-HOP

1 4 8 12
Thread

10−1

100

BFS

1 4 8 12
Thread

101

102

PR

Aspen Terrace Teseo RisGraph LiveGraph GraphOne LLAMA Stinger PCSR

Figure 10: Thread scalability for the read operations and graph analytics algorithms on Orkut

220 221 222 223 224 225 226

Vertex Count

10−1

100

101

102

Ru
nn

in
g 

Ti
m

e 
(s

ec
)

Edge

220 221 222 223 224 225 226

Vertex Count

10−1

100

1-HOP

220 221 222 223 224 225 226

Vertex Count

10−1

100

101

102

2-HOP

220 221 222 223 224 225 226

Vertex Count

10−1

100

BFS

220 221 222 223 224 225 226

Vertex Count

100

101

102

PR

Aspen Terrace Teseo RisGraph LiveGraph GraphOne LLAMA Stinger PCSR

Figure 11: Data scalability on the synthetic and power-law Graph500 graph by adjusting vertex count

LiveJournal Orkut Uniform-24 Graph500-24 Twitter

101

102

M
em

or
y 

Us
ag

e 
(G

B)

Aspen Terrace Teseo RisGraph LiveGraph GraphOne LLAMA Stinger PCSR CSR

Figure 12: Memory consumption of the systems for storing the experiment graph

threads. We use RMAT to generate a power-law graph and control
the number of vertices by keeping an average degree of 30. Some
data points are missing because some systems cannot load the
graphs. The results show that the running time scales linearly with
the size of the graph (note that both axes use a log scale). We also
tried to fix the number of vertices and change the average vertex
degree, and observe that the running time scales linearly with the
number of edges in the graph. The update throughput of the systems
generally exhibits a slowly decreasing trend w.r.t. graph size. Due
to page limit, we refer interested readers to our technical report for
these results.

4.6 Memory Consumption
Figure 12 reports the memory costs of the systems for storing the
experiment graphs, and CSR is included as a baseline. The results
show that Aspen consumes the least memory in most cases and
the advantage is more significant for large graphs. This is because
Aspen only stores the graph topology and compresses the edges. In
contrast, LiveGraph store additional timestamps and property size
for each edge, and thus have large memory consumption. LLAMA
consumes a large amount of memory because it uses snapshots and

each snapshot needs to copy the indirection array and vertex array
even if there are only a few updates. The memory consumption of
RisGraph is low for small graphs but large for big graphs. This is
because RisGraph builds a hash index for vertices with more than
512 edges and large graphs have more high degree vertices. Teseo,
PCSR and Terrace reserve space for efficient updates and thus have
larger memory consumption than CSR. Although the three systems
all use PMA, Terrace consumes more memory as its in-place array
has a small fill factor.

5 DISCUSSIONS
As shown by our survey in Section 3 and experiments in Section 4,
existing dynamic graph storage systems are designed with differ-
ent considerations, and there is no single winner that dominates
the others in all aspects. We also find that existing systems boil
down to a set of techniques that can be composed to meet different
application requirements. In this part, we summarize the key de-
sign choices our should make when designing a storage system for
dynamic graph and highlight some key techniques.
Structure, store the edges of each vertex in a separate structure
(e.g., the C-tree in Aspen and dynamic array in RisGraph) or store

11



the edges of multiple vertices in a shared structure (e.g., the PMA
in Teseo)? Independent structure simplifies parallel execution, espe-
cially for updates, and results in good thread scalability. However,
if the graph contains many low-degree vertices, the independent
structure may hinder algorithm execution as the edges for vertex
cannot fill a cache line. The shared structure requires locking for
updates (e.g., re-balance for PMA) and fine-grained locking (e.g.,
the edge-level locking in Stinger) is important for thread scalability.
By reading the edges of multiple vertices to the cache in one pass,
shared structure benefits global traversal algorithms, especially
when there are many low-degree vertices.
Property, does the application need to store additional properties
for each vertex/edge, and how to store the properties? As shown
by LiveGraph and Stinger, storing properties (e.g., timestamps and
property size) is necessary for certain purposes (e.g., version track-
ing and concurrency control) but degrades performance in all as-
pects. In contrast, Aspen stores only the graph topology and per-
forms well in several aspects. We think the properties need to be
stored according to their access patterns. Frequently accessed prop-
erties should be stored in-line along with each vertex/edge such
that their accesses are piggybacked with the graph topology (e.g.,
the edge weight when running SSSP). However, properties that are
accessed infrequently should be stored in separate structures to
reduce the memory footprint for update and read operations.
Legality, does the data source ensure the legality of updates (e.g.,
no duplicate edges)? If not, the system needs to conduct legality
check for updates, structures for edge lookup (e.g., PMA in Teseo
and hash index in RisGraph) should be used to quickly locate the
edges. These structures also accelerate fine-grained traversal algo-
rithms (i.e., TC) by pinpointing certain edges without scan. Other
indexes can also be tailored according to the access pattern of the
application (e.g., the pART for range scan in Tegra). The index can
be either the storage structure itself by maintaining certain invari-
ants (e.g., PMA) or separate from the main storage structure (e.g.,
the hash index in RisGraph and the ETA in Stinger).
Multiple structures, which jointly utilize multiple structures as
different structures excel in different aspects. PMA is an efficient
shared structure to maintain sorted edges and has only moderate
memory overhead (the fill factor is usually above 0.75 for Teseo
and Terrace). With block size aligned to the cache line, the tree
structures (e.g., B-tree and C-tree) have low space overhead and are
more efficient for update but slower for graph traversal than PMA.
Edge list excels in update performance and allows fine-grained
version tracking but is slow for traversal. For example, Terrace uses
a three-level architecture with array, PMA and B-tree for vertices
having different degrees. We think this methodology is a promising
direction for future research by developing other combinations of
basic structures, and one may want to consider it when designing
graph storage.
Compression, for example, the delta encoding used by Aspen to
compress the edges of each vertex. Compression reduces memory
consumption and accelerates graph analytics algorithms by reading
less data. Beside the edges, we think compression may also be
applied to other data such asweights and timestamps. It is important
that the underlying data layout is suitable for compression (e.g.,

delta encoding in Aspen is enabled by sorted edges) and to control
the costs of compression and decompression.
Batch optimization, which groups the updates according to their
target vertex as in Aspen and Terrace. This allows to amortize the
update cost and achieve high update throughput at large batch size.

6 CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, we conduct an extensive survey of existing dynamic
graph storage systems and evaluate their performance with exten-
sive experiments. We find that there is no single winner in existing
systems that dominate the others in all aspects, and different sys-
tems make different trade-offs in their designs. To facilitate the
design of future graph storage systems, we characterize the per-
formance implications of different storage structures, summarize
the key design requirements one should consider, and discuss how
existing techniques can be utilized to meet these requirements. We
think there are several promising directions for future research.
Adaptive storage structure. There is a conflict between traversal
and update performance for existing storage structures. Specifically,
a compact array (as in CSR) is the most efficient for traversal but ex-
pensive for update; PMA makes update efficient by reserving space
but scarifies some traversal performance; pointer-based structures
(e.g., B-tree and C-tree) can be regarded as reserving infinite space
between data, and are efficient for update but slow for traversal due
to pointer chasing. Terrace observes that high degree vertices are
more likely to receive updates and store nodes with larger degrees
in structures with more reserved spaces. However, the transition
among array, PMA and trees is discrete based on degree thresholds.
A better trade-off between traversal and update performance may
be achieved by designing an adaptive data structure that smoothly
adjusts the reserved space for nodes with different degrees.
Multi-view storage. Different applications may run on the same
graph, and it can be difficult to design a graph storage to suit all
applications as their requirements may conflict with each other. For
example, BFS and TC only access the graph topology and are effi-
cient if edge weight is stored in separate structures. However, SSSP
relies on edge weight and requires to store edge weight in-line with
the graph topology. The situation becomes more complex when
each vertex/edge contains more properties and different applica-
tions access different properties. It is possible to maintain different
storage views of the same graph, with each view tailored for one
class of applications/queries, in a spirit similar to materialized views
in databases. Mechanisms need to be designed to ensure the consis-
tency among the views and control memory consumption.
Large-scale solutions. Existing systems mainly consider the main
memory for a single machine, which may not be able to hold ex-
tremely large graphs. One option is to scale up the capacity of one
machine with SSD. Although the bandwidth of current SSDs can
reach more than 2GB/s, their latency is still more than 100x of
DRAM. Moreover, designs should also consider that SSD accesses
are conducted in 4KB blocks. The other option is scale out with mul-
tiple machines. RDMA may be utilized for efficient cross-machine
communication as in A1 [22] but more sophisticated designs (e.g.,
using only one-sided verbs) may be required to reap the full benefits
of RDMA.

12



REFERENCES
[1] 2022. Friendster Network Dataset – KONECT. http://konect.cc/networks/

friendster/
[2] 2022. Giraph. http://giraph.apache.org/
[3] 2022. neo4j. https://neo4j.com/
[4] 2022. Orkut Network Dataset – KONECT. http://konect.cc/networks/orkut-links/
[5] 2022. Survey experiment implementation source code. https://github.com/

xiangyuzhi/GraphStorageExp/
[6] 2022. Technical report of dynamic graph storage. https://drive.google.com/file/d/

1scI0sU83y-vcPnT5Vmjg4tif_wMlGj20/view?usp=sharing
[7] Umut A Acar, Daniel Anderson, Guy E Blelloch, and Laxman Dhulipala. 2019.

Parallel batch-dynamic graph connectivity. In The 31st ACM Symposium on Par-
allelism in Algorithms and Architectures. 381–392.

[8] Umut A Acar, Andrew Cotter, Benoît Hudson, and Duru Türkoglu. 2011. Par-
allelism in dynamic well-spaced point sets. In Proceedings of the twenty-third
annual ACM symposium on Parallelism in algorithms and architectures. 33–42.

[9] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. 2015. Succinct: Enabling
queries on compressed data. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15). 337–350.

[10] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly
detection and description: a survey. Data mining and knowledge discovery 29, 3
(2015), 626–688.

[11] Khaled Ammar and Tamer Ozsu. 2018. Experimental analysis of distributed
graph systems. Proceedings of the VLDB Endowment 11, 10 (2018), 1151–1164.

[12] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and Do-
magoj Vrgoč. 2017. Foundations of modern query languages for graph databases.
ACM Computing Surveys (CSUR) 50, 5 (2017), 1–40.

[13] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. 2013. Linkbench: a database benchmark based on the facebook so-
cial graph. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data. 1185–1196.

[14] Michael A Bender, Erik D Demaine, and Martin Farach-Colton. 2000. Cache-
oblivious B-trees. In Proceedings 41st Annual Symposium on Foundations of Com-
puter Science. IEEE, 399–409.

[15] Michael A Bender and Haodong Hu. 2007. An adaptive packed-memory array.
ACM Transactions on Database Systems (TODS) 32, 4 (2007), 26–es.

[16] Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, and Torsten Hoe-
fler. 2021. Practice of streaming processing of dynamic graphs: Concepts, models,
and systems. IEEE Transactions on Parallel and Distributed Systems (2021).

[17] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer, Michał Pod-
stawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. 2019. Demys-
tifying graph databases: Analysis and taxonomy of data organization, system
designs, and graph queries. arXiv preprint arXiv:1910.09017 (2019).

[18] Alex Beutel, Leman Akoglu, and Christos Faloutsos. 2015. Fraud detection
through graph-based user behavior modeling. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 1696–1697.

[19] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2019. A
new deterministic algorithm for dynamic set cover. In 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, 406–423.

[20] Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: compression
techniques. In Proceedings of the 13th international conference on World Wide Web.
595–602.

[21] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. 2013.
TAO:Facebook’s Distributed Data Store for the Social Graph. In 2013 USENIX
Annual Technical Conference (USENIX ATC 13). 49–60.

[22] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett, Miguel Castro, Wonhee
Cho, Joshua Cowhig, Nikolas Gloy, Karthik Kalyanaraman, Richendra Khanna,
John Pao, et al. 2020. A1: A distributed in-memory graph database. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data. 329–
344.

[23] Yukuo Cen, Jing Zhang, Gaofei Wang, Yujie Qian, Chuizheng Meng, Zonghong
Dai, Hongxia Yang, and Jie Tang. 2019. Trust relationship prediction in alibaba
E-commerce platform. IEEE Transactions on Knowledge and Data Engineering 32,
5 (2019), 1024–1035.

[24] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
recursive model for graph mining. In Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 442–446.

[25] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One trillion edges: Graph processing at facebook-scale.
Proceedings of the VLDB Endowment 8, 12 (2015), 1804–1815.

[26] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022.
Introduction to algorithms. MIT press.

[27] Dean De Leo and Peter Boncz. 2021. Teseo and the analysis of structural dynamic
graphs. Proceedings of the VLDB Endowment 14, 6 (2021), 1053–1066.

[28] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. 2019. Low-latency graph
streaming using compressed purely-functional trees. In Proceedings of the 40th

ACM SIGPLAN conference on programming language design and implementation.
918–934.

[29] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
2014. FaRM: Fast Remote Memory. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). 401–414.

[30] Ayush Dubey, Greg D Hill, Robert Escriva, and Emin Gün Sirer. 2016. Weaver: a
high-performance, transactional graph database based on refinable timestamps.
Proceedings of the VLDB Endowment 9, 11 (2016), 852–863.

[31] David Easley and Jon Kleinberg. 2010. Networks, crowds, and markets: Reasoning
about a highly connected world. Cambridge university press.

[32] David Ediger, Rob McColl, Jason Riedy, and David A Bader. 2012. Stinger: High
performance data structure for streaming graphs. In 2012 IEEE Conference on
High Performance Extreme Computing. IEEE, 1–5.

[33] Stephen Eubank, Hasan Guclu, VS Anil Kumar, Madhav V Marathe, Aravind
Srinivasan, Zoltan Toroczkai, and Nan Wang. 2004. Modelling disease outbreaks
in realistic urban social networks. Nature 429, 6988 (2004), 180–184.

[34] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On power-law
relationships of the internet topology. ACM SIGCOMM computer communication
review 29, 4 (1999), 251–262.

[35] Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu, Wentao Han,
and Wenguang Chen. 2021. RisGraph: A Real-Time Streaming System for Evolv-
ing Graphs to Support Sub-millisecond Per-update Analysis at Millions Ops/s. In
Proceedings of the 2021 ACM SIGMOD International Conference on Management of
Data. 513–527.

[36] Soukaina Firmli, Vasileios Trigonakis, Jean-Pierre Lozi, Iraklis Psaroudakis,
AlexanderWeld, Dalila Chiadmi, Sungpack Hong, and Hassan Chafi. 2020. CSR++:
A Fast, Scalable, Update-Friendly Graph Data Structure. In 24th International
Conference on Principles of Distributed Systems (OPODIS’20).

[37] Sanchit Garg, Trinabh Gupta, Niklas Carlsson, and Anirban Mahanti. 2009. Evo-
lution of an online social aggregation network: an empirical study. In Proceedings
of the 9th ACM SIGCOMM Conference on Internet Measurement. 315–321.

[38] Pranjal Gupta, Amine Mhedhbi, and Semih Salihoglu. 2021. Columnar storage
and list-based processing for graph database management systems. Proceedings
of the VLDB Endowment 14, 11 (2021), 2491–2504.

[39] Bernardo A Huberman and Lada A Adamic. 1999. Growth dynamics of the
world-wide web. Nature 401, 6749 (1999), 131–131.

[40] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat-
Pérez, Thomas Manhardto, Hassan Chafio, Mihai Capotă, Narayanan Sundaram,
Michael Anderson, et al. 2016. LDBC Graphalytics: A benchmark for large-scale
graph analysis on parallel and distributed platforms. Proceedings of the VLDB
Endowment 9, 13 (2016), 1317–1328.

[41] Alon Itai, Alan G Konheim, and Michael Rodeh. 1981. A sparse table implemen-
tation of priority queues. In International Colloquium on Automata, Languages,
and Programming. Springer, 417–431.

[42] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. 2016. Time-
evolving graph processing at scale. In Proceedings of the fourth international
workshop on graph data management experiences and systems. 1–6.

[43] Anand Padmanabha Iyer, Qifan Pu, Kishan Patel, Joseph E Gonzalez, and Ion
Stoica. 2021. TEGRA: Efficient Ad-Hoc Analytics on Evolving Graphs. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 21).
337–355.

[44] Anurag Khandelwal, Zongheng Yang, Evan Ye, Rachit Agarwal, and Ion Stoica.
2017. Zipg: A memory-efficient graph store for interactive queries. In Proceedings
of the 2017 ACM SIGMOD International Conference on Management of Data. 1149–
1164.

[45] Pradeep Kumar and H Howie Huang. 2020. Graphone: A data store for real-time
analytics on evolving graphs. ACM Transactions on Storage (TOS) 15, 4 (2020),
1–40.

[46] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In Proceedings of the 19th international
conference on World wide web. 591–600.

[47] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree:
ARTful indexing for main-memory databases. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE). IEEE, 38–49.

[48] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time:
densification laws, shrinking diameters and possible explanations. In Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge discovery in
data mining. 177–187.

[49] Matteo Lissandrini, Martin Brugnara, and Yannis Velegrakis. 2018. Beyond mac-
robenchmarks: microbenchmark-based graph database evaluation. Proceedings
of the VLDB Endowment 12, 4 (2018), 390–403.

[50] Yi Lu, James Cheng, Da Yan, and Huanhuan Wu. 2014. Large-scale distributed
graph computing systems: An experimental evaluation. Proceedings of the VLDB
Endowment 8, 3 (2014), 281–292.

[51] Peter Macko, Virendra J Marathe, Daniel W Margo, and Margo I Seltzer. 2015.
Llama: Efficient graph analytics using large multiversioned arrays. In 2015 IEEE
31st International Conference on Data Engineering. IEEE, 363–374.

13

http://konect.cc/networks/friendster/
http://konect.cc/networks/friendster/
http://giraph.apache.org/
https://neo4j.com/
http://konect.cc/networks/orkut-links/
https://github.com/xiangyuzhi/GraphStorageExp/
https://github.com/xiangyuzhi/GraphStorageExp/
https://drive.google.com/file/d/1scI0sU83y-vcPnT5Vmjg4tif_wMlGj20/view?usp=sharing
https://drive.google.com/file/d/1scI0sU83y-vcPnT5Vmjg4tif_wMlGj20/view?usp=sharing


[52] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135–146.

[53] Renxin Mao, Zhao Li, and Jinhua Fu. 2015. Fraud transaction recognition: A
money flow network approach. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management. 1871–1874.

[54] Norbert Martínez-Bazan, M Ángel Águila-Lorente, Victor Muntés-Mulero, David
Dominguez-Sal, Sergio Gómez-Villamor, and Josep-L Larriba-Pey. 2012. Effi-
cient graph management based on bitmap indices. In Proceedings of the 16th
International Database Engineering & Applications Sysmposium. 110–119.

[55] Andrew McGregor. 2014. Graph stream algorithms: a survey. ACM SIGMOD
Record 43, 1 (2014), 9–20.

[56] Krzysztof Nowicki and Krzysztof Onak. 2021. Dynamic graph algorithms with
batch updates in the massively parallel computation model. In Proceedings of the
2021 ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2939–2958.

[57] Prashant Pandey, Brian Wheatman, Helen Xu, and Aydin Buluc. 2021. Terrace: A
hierarchical graph container for skewed dynamic graphs. In Proceedings of the
2021 ACM SIGMOD International Conference on Management of Data. 1372–1385.

[58] Vijayan Prabhakaran, Ming Wu, Xuetian Weng, Frank McSherry, Lidong Zhou,
and Maya Haradasan. 2012. Managing Large Graphs on Multi-Cores with Graph
Awareness. In 2012 USENIX Annual Technical Conference (USENIX ATC 12). 41–52.

[59] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin,
and Jingren Zhou. 2018. Real-time constrained cycle detection in large dynamic
graphs. Proceedings of the VLDB Endowment 11, 12 (2018), 1876–1888.

[60] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. 2007. Near linear
time algorithm to detect community structures in large-scale networks. Physical
review E 76, 3 (2007), 036106.

[61] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph databases: new opportu-
nities for connected data. " O’Reilly Media, Inc.".

[62] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel.
2015. Chaos: Scale-out graph processing from secondary storage. In Proceedings
of the 25th Symposium on Operating Systems Principles. 410–424.

[63] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. 472–488.

[64] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M Tamer
Özsu. 2020. The ubiquity of large graphs and surprising challenges of graph

processing: extended survey. The VLDB journal 29, 2 (2020), 595–618.
[65] John Scott. 1988. Social network analysis. Sociology 22, 1 (1988), 109–127.
[66] Mo Sha, Yuchen Li, Bingsheng He, and Kian-Lee Tan. 2017. Accelerating Dynamic

Graph Analytics on GPUs. Proceedings of the VLDB Endowment 11, 1 (2017), 107–
120.

[67] Feng Sheng, Qiang Cao, and Jie Yao. 2020. Exploiting buffered updates for fast
streaming graph analysis. IEEE Trans. Comput. 70, 2 (2020), 255–269.

[68] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In Proceedings of the 18th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming. 135–146.

[69] Julian Shun, Laxman Dhulipala, and Guy E Blelloch. 2015. Smaller and faster:
Parallel processing of compressed graphs with Ligra+. In 2015 Data Compression
Conference. IEEE, 403–412.

[70] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. Kickstarter: Fast and accurate
computations on streaming graphs via trimmed approximations. In Proceed-
ings of the twenty-second international conference on architectural support for
programming languages and operating systems. 237–251.

[71] Brian Wheatman and Helen Xu. 2018. Packed compressed sparse row: A dy-
namic graph representation. In 2018 IEEE High Performance extreme Computing
Conference (HPEC). IEEE, 1–7.

[72] Wenpu Xing and Ali Ghorbani. 2004. Weighted pagerank algorithm. In Proceed-
ings. Second Annual Conference on Communication Networks and Services Research,
2004. IEEE, 305–314.

[73] Lei Yang, Lei Qi, Yan-Ping Zhao, Bin Gao, and Tie-Yan Liu. 2007. Link analysis
using time series of web graphs. In Proceedings of the sixteenth ACM conference
on Conference on information and knowledge management. 1011–1014.

[74] Yunhao Zhang, Rong Chen, and Haibo Chen. 2017. Sub-millisecond stateful
stream querying over fast-evolving linked data. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles. 614–630.

[75] Xiaowei Zhu, Guanyu Feng, Marco Serafini, Xiaosong Ma, Jiping Yu, Lei Xie,
Ashraf Aboulnaga, and Wenguang Chen. 2020. LiveGraph: A transactional graph
storage system with purely sequential adjacency list scans. Proceedings of the
VLDB Endowment 13, 7 (2020), 1020–1034.

[76] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph:Large-Scale
Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning.
In 2015 USENIX Annual Technical Conference (USENIX ATC 15). 375–386.

14


	Abstract
	1 Introduction
	2 Background
	2.1 Workloads and Performance Metrics
	2.2 Basic Graph Storage Formats

	3 Dynamic Graph Storage Systems
	3.1 Adjacency List Variants
	3.2 CSR Variants
	3.3 Hybrid Storage Systems

	4 Experimental Evaluation
	4.1 Experiment Settings
	4.2 Update Performance
	4.3 Read Performance
	4.4 Algorithm Execution
	4.5 Scalability
	4.6 Memory Consumption

	5 Discussions
	6 Conclusions and Future Directions
	References

